血液凝塊的是我們身體中那些令人難以置信的復(fù)雜和重要過程之一,,我們很少去思考血液凝塊是如何發(fā)生的以及在什么時(shí)候會發(fā)生。如果你的血液不凝固,,你砍傷自己的話你可能會流血過多死亡,,如果你的血液凝塊的太多,你可能會心臟病發(fā)作或中風(fēng),??柤永锎髮W(xué)Hans Vogel教授一直從事有關(guān)凝血方面的研究,他最新研究發(fā)表在《美國化學(xué)學(xué)會雜志》,,該研究將有助于我們更好地理解凝血過程,。
Vogel和他的研究生Hao Huang能夠確定血小板上蛋白分子的三維結(jié)構(gòu)和穿過細(xì)胞膜向外延伸的受體。該受體蛋白對血小板以及直接控制血液凝塊的形成很重要,。其他科學(xué)家想要描繪出蛋白結(jié)構(gòu),,但都沒成功,Huang和Vogel卻做到了,。
科學(xué)學(xué)院生物科學(xué)系Vogel說:這項(xiàng)研究的目標(biāo)是在分子水平上了解血凝塊的發(fā)生過程,。最終長遠(yuǎn)目標(biāo)是進(jìn)行干預(yù)這一過程,盡管干預(yù)這樣一個(gè)微妙過程需非常小心,。通常情況下,,這些分子結(jié)構(gòu)對制藥公司很有用,他們需要以此結(jié)構(gòu)為出發(fā)點(diǎn)開發(fā)新的藥物,。
Vogel的實(shí)驗(yàn)室更大的目標(biāo)是要弄清楚我們的身體如何響應(yīng)外來侵略的細(xì)菌,,特別是那些抗生素?zé)o法治療的超級病菌。Vogel說:“你真的不希望血凝塊啟動感染反應(yīng),,所以一旦血小板到達(dá)感染部位,,它會釋放各種蛋白質(zhì),,然后吸引抗菌的所有有利因素。血小板與白血細(xì)胞一起共同“策劃”一個(gè)非常重要的抗菌反應(yīng),。
Vogel的下一步研究是嘗試更深入了解這種抗菌反應(yīng),。沃格爾說。我一直這樣努力研究已長達(dá)30年,,如果你看一下你的職業(yè)生涯,,你取得的許多漸進(jìn)的進(jìn)步會共同構(gòu)建成一個(gè)巨大的成功。Vogel在這一領(lǐng)域的研究由艾伯塔創(chuàng)新醫(yī)療健康解決計(jì)劃和加拿大衛(wèi)生研究院的資助,。(生物谷:Bioon)
doi:10.1021/ja2111306
PMC:
PMID:
Structural Basis for the Activation of Platelet Integrin αIIbβ3 by Calcium- and Integrin-Binding Protein 1
Hao Huang, Hans J. Vogel.
Calcium and integrin binding protein 1 (CIB1) is a specific binding partner for the cytoplasmic domain of the αIIb subunit of the highly abundant platelet integrin αIIbβ3. This protein has been suggested to be involved in the regulation of the activation of αIIbβ3, a process leading to platelet aggregation and blood coagulation. In this work, the solution structure of the deuterated Ca2+-CIB1 protein complexed with an αIIb peptide was first determined through modern RDC-based NMR methods. Next, we generated a complex structure for CIB1 and the αIIb domain (Ca2+-CIB1/αIIb) using the program Haddock, which is based on experimental restraints obtained for the protein–peptide interface from cross-saturation NMR experiments. In this data-driven complex structure, the N-terminal α-helix of the cytoplasmic domain of αIIb is buried in the hydrophobic pocket of the C-lobe of Ca2+-CIB1. The C-terminal acidic tail of αIIb remains unstructured and likely interacts with several positively charged residues in the N-lobe of Ca2+-CIB1. A potential molecular mechanism for the CIB1-mediated activation of the platelet integrin could be proposed on the basis of the model structure of this protein complex. Another feature of this work is that, in the NMR cross-saturation experiments, we applied the selective radio frequency irradiation to the smaller binding partner (the αIIb peptide), and successfully detected the binding interface on the larger binding partner Ca2+-CIB1 through its selectively protonated methyl groups. This ‘reverse’ methodology has a broad potential to be employed to many other complexes where synthetic peptides and a suitably isotope-labeled medium- to large-sized protein are used to study protein–protein interactions.