美國南加州大學和能源部勞倫斯伯克利國家實驗室的先進光源(ALS)最近發(fā)現(xiàn),,在氫鍵被封鎖的情況下,質(zhì)子也能通過一種完全不同的途徑實現(xiàn)遷移,。相關(guān)論文發(fā)表在近期出版的《自然·化學》(Nature Chemistry)上,。
氫鍵在DNA(脫氧核糖核酸)和RNA(核糖核酸)中連接著互補編碼基因的堿基對,構(gòu)成了各種蛋白質(zhì)結(jié)構(gòu),,在生物化學中很重要,。傳統(tǒng)理論認為,只有形成了氫鍵才能實現(xiàn)質(zhì)子遷移,,氫鍵網(wǎng)絡就像一種“質(zhì)子線”,。
研究核苷酸的結(jié)構(gòu)對了解它們的生物學功能具有重要意義。RNA與DNA有3個相同的堿基對:腺嘌呤,、胞嘧啶和鳥嘌呤,,不同的是第4個,在DNA是胸腺嘧啶,,而在RNA中是尿嘧啶,。尿嘧啶環(huán)與其他堿基之間的連接通常在一個平面上,,而一種Pi鍵能讓它們形成垂直連接,這種“Pi堆疊”對構(gòu)造DNA和RNA,、蛋白質(zhì)折疊及其他結(jié)構(gòu)至關(guān)重要,。
為了研究DNA和RNA中堿基的連接機制,南加州大學理論研究小組安娜·克雷洛夫小組制作了環(huán)形尿嘧啶二聚體的分子模型,,標記為“1,3-二甲基尿嘧啶”,,研究它們被離子化以后會發(fā)生什么情況。
伯克利國家實驗室的研究小組先使甲基化的尿嘧啶單體和二聚體生成了一束氣態(tài)分子束,,然后用ALS同步加速器中的一束高能紫外光使它們離子化,,再用物質(zhì)分光譜檢測生成物質(zhì)量,研究尿嘧啶對外來能量有什么反應,。結(jié)果發(fā)現(xiàn),,離子化過程中出現(xiàn)了質(zhì)子遷移,卻沒有形成氫鍵,,二聚體分成兩個單體,,其中一個單體被質(zhì)子化。再次經(jīng)過含氘的二甲基尿嘧啶實驗,,證明這種質(zhì)子遷移確實來自甲基,,而不是芳香族的碳氫鍵位。
研究人員解釋說,,計算顯示,,在“Pi堆疊”堿基對和氫鍵堿基對中都有質(zhì)子遷移反應,但二者有本質(zhì)的區(qū)別,。甲基化二聚體發(fā)生的質(zhì)子遷移中,,兩個單體之間的重新組合降低了能量門檻,使得發(fā)生質(zhì)子遷移只需0.6電子伏,。
伯克利實驗室小組領(lǐng)導艾米爾·格蘭指出,,將尿嘧啶在氣體狀態(tài)離子化的模型系統(tǒng)與活組織中的情況完全一樣。(生物谷Bioon.com)
doi:10.1038/nchem.1298
PMC:
PMID:
Ionization of dimethyluracil dimers leads to facile proton transfer in the absence of hydrogen bonds
Amir Golan, Ksenia B. Bravaya, Romas Kudirka, Oleg Kostko, Stephen R. Leone, Anna I. Krylov & Musahid Ahmed
Proton transfer is ubiquitous in chemistry and biology, occurring, for example, in proteins, enzyme reactions and across proton channels and pumps. However, it has always been described in the context of hydrogen-bonding networks (‘proton wires’) acting as proton conduits. Here, we report efficient intramolecular ionization-induced proton transfer across a 1,3-dimethyluracil dimer, a model π-stacked system with no hydrogen bonds. Upon photoionization by tunable vacuum ultraviolet synchrotron radiation, the dimethyluracil dimer undergoes proton transfer and dissociates to produce a protonated monomer. Deuterated dimethyluracil experiments confirm that proton transfer occurs from the methyl groups and not from the aromatic C–H sites. Calculations reveal qualitative differences between the proton transfer reaction coordinate in the π-stacked and hydrogen-bonded base pairs, and that proton transfer in methylated dimers involves significant rearrangements of the two fragments, facilitating a relatively low potential energy barrier of only 0.6 eV in the ionized dimer.