2012年9月14日 訊 /生物谷BIOON/ --棉鈴蟲(Helicoverpa armigera)幼蟲在全世界是一種危害性極大的昆蟲,。大約有200種不同的植物物種是這種貪婪性昆蟲的潛在食物,。這種昆蟲攻擊非洲、南歐,、印度,、中亞,、新西蘭和澳大利亞等地的農(nóng)作物。幾乎30%的在全世界使用的殺蟲劑---蘇云金桿菌毒蛋白(Bt toxin)和擬除蟲菊酯(pyrethroid)---被用來保護(hù)棉花和其他農(nóng)作物免受棉鈴蟲幼蟲的攻擊,。
擬除蟲菊酯是一種基于在艾菊(Tanacetum)花中發(fā)現(xiàn)的天然除蟲菊殺蟲劑的人工合成化合物,。幾十年來,它們被成功地用于水果,、蔬菜和農(nóng)作物種植,。自從1983年,在澳大利亞,,棉鈴蟲對一種特別有效的擬除蟲菊酯---氰戊菊酯(fenvalerate)---產(chǎn)生抗藥性,。1998年,David Heckel首次在這種害蟲的基因組中確定了一種抗藥性基因的位置,。這個(gè)基因座位后來被發(fā)現(xiàn)編碼一個(gè)細(xì)胞色素P450單加氧酶,。這些所謂的細(xì)胞色素P450酶(CYP)通過氧化毒素或藥物而讓它們失效。
德國馬克斯·普朗克化學(xué)生態(tài)學(xué)研究所科學(xué)家Nicole Joußen,研究了棉鈴蟲品種TWB對氰戊菊酯產(chǎn)生的抗藥性,。她在這種品種鑒定出P450單加氧酶,,于是猜測它調(diào)節(jié)這種害蟲對擬除蟲菊酯產(chǎn)生的抗藥性。在克隆了較大的基因組片段,、DNA測序,、進(jìn)行交叉實(shí)驗(yàn)和生化分析之后,她吃驚地發(fā)現(xiàn)在7種P450酶中,,只有一種酶CYP337B3對氰戊菊酯進(jìn)行羥基化反應(yīng)而產(chǎn)生4'-羥基氰戊菊酯,。這種化學(xué)反應(yīng)讓棉花蟲對這種殺蟲劑產(chǎn)生的抗藥性增加了42倍。
不平等交換導(dǎo)致基因CYP337B3形成
遺傳學(xué)家發(fā)現(xiàn)基因CYP337B3是通過不平等交換(unequal crossing-over)而形成的,。如果非常相似的DNA序列,,比如轉(zhuǎn)座因子(transposable element),在細(xì)胞核分裂期間相互接觸,,那么新的基因重組就會發(fā)生,。因此,一些遺傳物質(zhì)在一條DNA鏈上丟失,,新的遺傳物質(zhì)插入,,有時(shí)在另一條鏈上一些遺傳物質(zhì)甚至加倍。這種自然過程對基因家族進(jìn)化而言非常重要,,就如同在基因CYP337B3上觀察到的那樣,。David Heckel說,“我們的研究結(jié)果第一次揭示出一種突變調(diào)控棉鈴蟲對一種殺蟲劑產(chǎn)生的抗藥性,,而這種突變是由一種交換事件產(chǎn)生的,。”
研究人員研究了基因CYP337B3,結(jié)果發(fā)現(xiàn)這個(gè)基因是由兩個(gè)其他的P450基因---CYP337B1和CYP337B2---各一部分組成的,。CYP337B1或CYP337B2單獨(dú)編碼的酶不能讓氰戊菊酯喪失毒性,。在嵌合的CYP337B3基因中,,CYP337B1和CYP337B2各一部分的獨(dú)特組合讓這種P450酶能夠結(jié)合到這種殺蟲劑之上,并讓它發(fā)生羥基化,,從而讓它失去毒性,。
一旦CYP337B3基因產(chǎn)生,噴灑擬除蟲菊酯將導(dǎo)致抗藥性棉鈴蟲群體逐漸增加,。在澳大利亞,,人們可以成功地延緩這種抗藥性的產(chǎn)生:每天使用一次擬除蟲菊酯,在其他時(shí)間使用其他的殺蟲劑,。但是在其他種植棉花的國家,由于過量使用擬除蟲菊酯,,情況剛好相反:抗藥性快速產(chǎn)生,,這樣這種殺蟲劑不能有效地抵抗棉鈴蟲。(生物谷Bioon.com)
doi: 10.1073/pnas.1202047109
PMC:
PMID:
Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3
Nicole Joußen, Sara Agnolet, Sybille Lorenz, Sebastian E. Schöne, Renate Ellinger, Bernd Schneider, David G. Heckel
Worldwide, increasing numbers of insects have evolved resistance to a wide range of pesticides, which hampers their control in the field and, therefore, threatens agriculture. Members of the carboxylesterase and cytochrome P450 monooxygenase superfamilies are prominent candidates to confer metabolic resistance to pyrethroid insecticides. Both carboxylesterases and P450 enzymes have been shown to be involved in pyrethroid resistance in Australian Helicoverpa armigera, the noctuid species possessing by far the most reported resistance cases worldwide. However, specific enzymes responsible for pyrethroid resistance in field populations of this species have not yet been identified. Here, we show that the resistance toward fenvalerate in an Australian strain of H. armigera is due to a unique P450 enzyme, CYP337B3, which arose from unequal crossing-over between two parental P450 genes, resulting in a chimeric enzyme. CYP337B3 is capable of metabolizing fenvalerate into 4′-hydroxyfenvalerate, which exhibits no toxic effect on susceptible larvae; enzymes from the parental P450 genes showed no detectable fenvalerate metabolism. Furthermore, a polymorphic H. armigera strain could be bred into a susceptible line possessing the parental genes CYP337B1 and CYP337B2 and a resistant line possessing only CYP337B3. The exclusive presence of CYP337B3 in resistant insects of this strain confers a 42-fold resistance to fenvalerate. Thus, in addition to previously documented genetic mechanisms of resistance, recombination can also generate selectively advantageous variants, such as this chimeric P450 enzyme with an altered substrate specificity leading to a potent resistance mechanism.