2012年11月24日 訊 /生物谷BIOON/ --50年前,,科學(xué)家們首次提出了關(guān)于蛋白質(zhì)折疊的問(wèn)題,隨后研究者們?cè)诰扌陀?jì)算機(jī),、新材料,、藥物開發(fā)以及人類基本生命過(guò)程的理解上取得了巨大成就,這其中就包括在蛋白質(zhì)折疊相關(guān)的疾病,,如阿爾茲海默癥,、帕金森疾病以及II型糖尿病等。
近日,,刊登在國(guó)際雜志Science上的一篇研究報(bào)告中,,來(lái)自紐約州立大學(xué)石溪分校的研究者回顧了50年來(lái)蛋白質(zhì)折疊問(wèn)題的相關(guān)進(jìn)展情況。蛋白質(zhì)折疊是一種典型的基礎(chǔ)科學(xué),,研究者表示,,蛋白質(zhì)可以快速折疊,因?yàn)殡S機(jī)熱能運(yùn)動(dòng)可以促使構(gòu)象改變導(dǎo)致蛋白質(zhì)本來(lái)的結(jié)構(gòu)發(fā)生改變,。1962年的諾貝爾化學(xué)獎(jiǎng)授予給了Max Perutz和John Kendrew,,理由是因?yàn)槠涑晒馕隽饲虻鞍椎慕Y(jié)構(gòu),這樣工作為結(jié)構(gòu)生物學(xué)奠定了基礎(chǔ),。
蛋白質(zhì)是形成生物細(xì)胞的基本結(jié)構(gòu)分子,,其可以修復(fù)DNA分子以及損傷的細(xì)胞結(jié)構(gòu),可以幫助肌肉進(jìn)行運(yùn)動(dòng),,可以轉(zhuǎn)換信號(hào),。人類機(jī)體約含有20,000不同類型的蛋白質(zhì)分子,,每一個(gè)都行使著不同的功能,,不同的氨基酸分子可以通過(guò)不同的折疊方式形成不同的蛋白質(zhì)分子,使得這些蛋白質(zhì)分子扮演著不同的功能,。
蛋白質(zhì)折疊存在三個(gè)相互關(guān)聯(lián)的謎題,,折疊密碼是什么?細(xì)胞中蛋白質(zhì)如何找到自己的天然結(jié)構(gòu),?科學(xué)家們?nèi)绾慰梢詮囊幌盗械陌被岱肿又泻Y選發(fā)現(xiàn)一些新的蛋白質(zhì)結(jié)構(gòu),?研究者Dill描述了他們的一些研究進(jìn)展,,他們開發(fā)出了IBM藍(lán)色基因型計(jì)算機(jī)一級(jí)分布式網(wǎng)絡(luò)計(jì)算算法,基于開發(fā)新藥的超級(jí)計(jì)算機(jī)等,,這對(duì)于研究蛋白質(zhì)折疊相關(guān)的疾病以及新型藥物的開發(fā)可以會(huì)帶來(lái)希望,。(生物谷Bioon.com)
編譯自:Protein Folding: Look Back On Scientific Advances Made as Result of 50-Year Old Puzzle
doi:10.1126/science.1219021
PMC:
PMID:
The Protein-Folding Problem, 50 Years On
Ken A. Dill1,2,3,*, Justin L. MacCallum1
The protein-folding problem was first posed about one half-century ago. The term refers to three broad questions: (i) What is the physical code by which an amino acid sequence dictates a protein’s native structure? (ii) How can proteins fold so fast? (iii) Can we devise a computer algorithm to predict protein structures from their sequences? We review progress on these problems. In a few cases, computer simulations of the physical forces in chemically detailed models have now achieved the accurate folding of small proteins. We have learned that proteins fold rapidly because random thermal motions cause conformational changes leading energetically downhill toward the native structure, a principle that is captured in funnel-shaped energy landscapes. And thanks in part to the large Protein Data Bank of known structures, predicting protein structures is now far more successful than was thought possible in the early days. What began as three questions of basic science one half-century ago has now grown into the full-fledged research field of protein physical science.