如果癌癥治療能像計(jì)算機(jī)程序那樣,,根據(jù)條件執(zhí)行任務(wù),結(jié)果會(huì)怎樣呢,?物理學(xué)家組織網(wǎng)近日?qǐng)?bào)道,加州理工學(xué)院的研究人員開發(fā)出一種小條件性RNA(核糖核酸)分子,,它可以按照“如果……只有……才……”的邏輯命令來(lái)殺死變異細(xì)胞,,極大程度地減輕了癌癥治療的副作用,研究論文發(fā)表在9月6日的美國(guó)《國(guó)家科學(xué)院院刊》(PNAS)上,。
癌癥是環(huán)境和遺傳因素雙重作用的“產(chǎn)兒”,,且每種癌癥都很獨(dú)特,所以很難治療,。傳統(tǒng)化療是通過假定一種或者多種藥物既能識(shí)別,,又能殺死癌細(xì)胞來(lái)治療癌癥的,。而事實(shí)上,,藥物的選擇性很有限,,化療還會(huì)帶來(lái)很多副作用,比如經(jīng)常服用一種瞄準(zhǔn)快速增生的腫瘤細(xì)胞的化療藥物會(huì)導(dǎo)致脫發(fā),,因?yàn)轭^發(fā)毛囊細(xì)胞是人體中生長(zhǎng)最快的細(xì)胞之一,,癌癥藥物的識(shí)別往往會(huì)“張冠李戴”。
研究人員演示了小條件性RNA分子有選擇地殺死癌細(xì)胞的過程,,結(jié)果表明,,這種分子可有效地消除實(shí)驗(yàn)室培養(yǎng)的腦癌、前列腺癌和骨癌細(xì)胞,,而沒有癌變的細(xì)胞數(shù)量并無(wú)明顯減少,。論文合著者尼爾斯·皮爾斯說(shuō),這種分子能測(cè)出癌細(xì)胞的內(nèi)部變異,,然后在其內(nèi)部激活治療反應(yīng),,而在沒有癌變的細(xì)胞中保持沉默。
RNA在細(xì)胞中執(zhí)行各種功能,,包括作為信使,,交流轉(zhuǎn)換、監(jiān)控以及在某些時(shí)候表達(dá)基因等,。一般基因平均有數(shù)千個(gè)堿基對(duì),,一種長(zhǎng)度小于30個(gè)堿基對(duì)的特殊RNA稱為小RNA,,許多生命過程都離不開它們,。和DNA(脫氧核糖核酸)相比,RNA相對(duì)短命,,但其編碼系統(tǒng)卻存儲(chǔ)了人體中幾乎每個(gè)細(xì)胞的完整基因組的全部備份,。
研究人員從結(jié)構(gòu)上模擬人體細(xì)胞產(chǎn)生的小RNA,研究出一種包含兩個(gè)獨(dú)立小RNA的小條件性RNA分子,。如果將特征標(biāo)記植入這種RNA中,,就能將識(shí)別和治療過程分開,,讓其具有高選擇性和高效殺死癌細(xì)胞的能力。第一個(gè)小RNA開啟“如果……只有……才……”程序,,診斷癌癥變異,,發(fā)現(xiàn)癌變后才釋放出一種事先隱藏在小RNA中的信號(hào),使另一個(gè)小RNA和它連接起來(lái),,引發(fā)連環(huán)反應(yīng),。然后,這些RNA分子開始持續(xù)不斷地生成長(zhǎng)鏈,。分子鏈越長(zhǎng),,就越容易誘發(fā)細(xì)胞產(chǎn)生病毒入侵的免疫應(yīng)答,從而進(jìn)入自我毀滅程序,。
皮爾斯說(shuō),,從概念上講,小條件性RNA改變了癌癥治療的前景,,因?yàn)樗菑姆肿铀絹?lái)改變治療,,但其治療效果還要通過實(shí)驗(yàn)進(jìn)一步確定。
這項(xiàng)研究是國(guó)家科學(xué)基金會(huì)計(jì)算機(jī),、信息科學(xué)與工程理事會(huì)資助的“分子規(guī)劃項(xiàng)目”的一部分,,其目標(biāo)之一就是研究生物分子如何存儲(chǔ)和處理信息以及怎樣在實(shí)際中應(yīng)用這些信息等,研究的核心就是RNA,。(生物谷Bioon.com)
生物谷近期特別推薦會(huì)議:
2010細(xì)胞治療研究進(jìn)展與臨床應(yīng)用前沿研討會(huì) www.Cell-therapies.net 2010年9月23日-25日天津召開
第一屆腫瘤基礎(chǔ)和轉(zhuǎn)化醫(yī)學(xué)國(guó)際研討會(huì) www.cancerasia.org 2010年10月12日-10月15日上海召開
生物谷推薦英文摘要:
PNAS doi: 10.1073/pnas.1006377107
Selective cell death mediated by small conditional RNAs
Suvir Venkataramana, Robert M. Dirksa,b, Christine T. Uedab, and Niles A. Piercea,c,1
aDepartment of Bioengineering;
bDepartment of Chemistry; and
cDepartment of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125
Cancer cells are characterized by genetic mutations that deregulate cell proliferation and suppress cell death. To arrest the uncontrolled replication of malignant cells, conventional chemotherapies systemically disrupt cell division, causing diverse and often severe side effects as a result of collateral damage to normal cells. Seeking to address this shortcoming, we pursue therapeutic regulation that is conditional, activating selectively in cancer cells. This functionality is achieved using small conditional RNAs that interact and change conformation to mechanically transduce between detection of a cancer mutation and activation of a therapeutic pathway. Here, we describe small conditional RNAs that undergo hybridization chain reactions (HCR) to induce cell death via an innate immune response if and only if a cognate mRNA cancer marker is detected within a cell. The sequences of the small conditional RNAs can be designed to accept different mRNA markers as inputs to HCR transduction, providing a programmable framework for selective killing of diverse cancer cells. In cultured human cancer cells (glioblastoma, prostate carcinoma, Ewing’s sarcoma), HCR transduction mediates cell death with striking efficacy and selectivity, yielding a 20- to 100-fold reduction in population for cells containing a cognate marker, and no measurable reduction otherwise. Our results indicate that programmable mechanical transduction with small conditional RNAs represents a fundamental principle for exploring therapeutic conditional regulation in living cells.