據(jù)美國物理學(xué)家組織網(wǎng)8月2日?qǐng)?bào)道,,美國邁阿密大學(xué)和德國海德堡大學(xué)的研究人員日前開發(fā)出了一種能夠幫助人們理解和預(yù)測(cè)腫瘤生長趨勢(shì)的數(shù)學(xué)模型,。研究人員希望該模型能夠幫助醫(yī)生為患者制定出高度個(gè)性化的治療方案,。相關(guān)論文發(fā)表在《自然》雜志旗下的新刊《科學(xué)報(bào)告》雜志網(wǎng)絡(luò)版上。
從宏觀角度來看,,當(dāng)腫瘤在人體內(nèi)形成時(shí),,至少會(huì)存在以下兩種情況:一是腫瘤停止生長保持潛伏狀態(tài);二是通過血管從人體“盜取”能量并不斷發(fā)展,。這些為腫瘤提供能量的血管除了滋養(yǎng)腫瘤外,,同時(shí)還為癌細(xì)胞的擴(kuò)散提供了一個(gè)渠道,癌細(xì)胞借此就能轉(zhuǎn)移到人體的其他部位,。新研究對(duì)第二種情況進(jìn)行了關(guān)注,,揭示了腫瘤和供養(yǎng)它的血管之間的一種隱性聯(lián)系。
負(fù)責(zé)該項(xiàng)研究的美國邁阿密大學(xué)物理學(xué)教授尼爾·詹森說,,癌癥是一種可從多種角度進(jìn)行理解的疾病,。癌細(xì)胞大量聚集便有可能形成腫瘤,當(dāng)其侵入脈管系統(tǒng)后就會(huì)發(fā)生轉(zhuǎn)移,。通過了解腫瘤生長的反饋信息,,該模型能夠較為準(zhǔn)確地對(duì)腫瘤的生長趨勢(shì)作出預(yù)測(cè),并指明能夠控制其生長的血管,,這有望開辟出一條個(gè)性化的干預(yù)路徑,,對(duì)相關(guān)疾病的治療具有積極意義。
參與這項(xiàng)研究的德國癌癥研究中心博士后崔賽歐(音)說:“我們的模型能夠從實(shí)時(shí)圖像中發(fā)現(xiàn)腫瘤的局部差異,,并能直接對(duì)其進(jìn)行測(cè)量,。如果結(jié)合患者的其他數(shù)據(jù),其預(yù)測(cè)結(jié)果還將更為準(zhǔn)確,。”
邁阿密大學(xué)西爾威斯特綜合癌癥中心主任約瑟夫-羅森布拉特說,,基于精確的生長動(dòng)力學(xué)評(píng)估和腫瘤生長與血管形成之間相互依存關(guān)系的判斷,該模型能夠?yàn)榘┌Y的治療設(shè)定精確的治療時(shí)間間隔和用藥劑量,,這種有針對(duì)性的治療方案將能大大減少患者在治療過程中所承受的痛苦,,也能為醫(yī)療人員帶來更大的便利。(生物谷 Bioon.com)
doi:10.1038/srep00031
PMC:
PMID:
Model for in vivo progression of tumors based on co-evolving cell population and vasculature
Sehyo C. Choe, Guannan Zhao, Zhenyuan Zhao, Joseph D. Rosenblatt, Hyun-Mi Cho,Seung-Uon Shin & Neil F. Johnson
With countless biological details emerging from cancer experiments, there is a growing need for minimal mathematical models which simultaneously advance our understanding of single tumors and metastasis, provide patient-personalized predictions, whilst avoiding excessive hard-to-measure input parameters which complicate simulation, analysis and interpretation. Here we present a model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in a murine mammary cell line EMT6-HER2 model in BALB/c mice and with clinical metastasis data. Seeding data about the tumor and its vasculature from in vivo images, our model predicts corridors of future tumor growth behavior and intervention response. A scaling relation enables the estimation of a tumor's most likely evolution and pinpoints specific target sites to control growth. Our findings suggest that the clinically separate phenomena of individual tumor growth and metastasis can be viewed as mathematical copies of each other differentiated only by network structure.