癌細胞長久以來一直以"甜食"飲食盛名,,利用大量的葡萄糖作為能源為細胞復制添磚加瓦。
目前,,約翰霍普金斯大學的科學家開展的一項研究表明,,被稱為B細胞的淋巴腺癌細胞在無葡萄糖存在時能夠利用谷氨酰胺進行細胞復制以生存,尤其在低氧條件下,,這種情況在腫瘤中很常見,。
在2012年1月4日出版的Cell Metabolism期刊上的一篇文章,Anne Le等人寫道,,這一發(fā)現是開發(fā)新穎的癌癥療法的關鍵,,因為它提供了"概念驗證"的證據,表明可以通過抑制一種叫做谷氨酰胺酶來抑制B細胞癌的生長,。
Le注意到,,盡管還不知道谷氨酰胺在B細胞癌生長中的作用,但在20種氨基酸里谷氨酰胺在血液循環(huán)中確實具有最高的水平,。三羧酸循環(huán)(TCA或Krebs循環(huán))被視為葡萄糖氧化的經典途徑,。然而,Le和其團隊開展的實驗表明,,在葡萄糖不存在時B細胞能氧化利用谷氨酰胺,。
研究還發(fā)現,當氧氣稀少時,,谷氨酰胺轉換成谷胱甘肽的作用增強,,谷胱甘肽是一種重要的化學分子,用于控制能致正常細胞損傷的含氧化學活性分子的積累,。
當研究人員使用一種谷氨酰胺酶抑制劑時,,培養(yǎng)皿中的B細胞癌的生長停滯了。
"TCA循環(huán)靈活利用谷氨酰胺和葡萄糖的途徑可能對于癌細胞的增殖和生存--尤其在腫瘤低氧-低營養(yǎng)的微環(huán)境下非常重要,,"Le說,。
現在,或許科學家們能夠利用這種生存策略來阻止癌細胞的生長,。"對癌細胞在代謝壓力下的新陳代謝及癌細胞重新編程生化途徑進行更廣泛和更深入的了解,,可以豐富針對腫瘤代謝的治療方法,"他說,。
除了約翰霍普金斯大學醫(yī)學院病理系助理教授Le外,,其他來自約翰霍普金斯大學的研究人員還包括Sminu Bose, Arvin Gouw, Joseph Barbi, Takashi Tsukamoto, Camilo J. Rojas and Barbara Slusher。約翰霍普金斯大學腦科學研究所的Tsukamoto,,、Rojas及Slusher等正在開發(fā)新的谷氨酰胺酶抑制劑藥物,。(生物谷bioon.com)
doi:10.1016/j.cmet.2011.12.009
PMC:
PMID:
Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells
Anne Le, Andrew N. Lane, Max Hamaker, Sminu Bose, Arvin Gouw, Joseph Barbi, Takashi Tsukamoto, Camilio J. Rojas, Barbara S. Slusher, Haixia Zhang, Lisa J. Zimmerman, Daniel C. Liebler, Robbert J.C. Slebos, Pawel K. Lorkiewicz, Richard M. Higashi, Teresa W.M. Fan, Chi V. Dang.
Summary: Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C-labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency makes them susceptible to the glutaminase inhibitor BPTES and hence could be targeted for cancer therapy.