波士頓的一個研究團(tuán)隊(duì)指出,在腦癌診斷與監(jiān)測方法方面取得了突破,,不進(jìn)行手術(shù)就能對腦腫瘤進(jìn)行可靠的診斷與監(jiān)測,。以前,沒有一種準(zhǔn)確的非手術(shù)測試用于檢測腦腫瘤,,腦腫瘤進(jìn)展或治療反應(yīng)的監(jiān)測方法也不可靠,。這項(xiàng)先導(dǎo)研究的結(jié)果發(fā)表在在線版Neuro-Oncology上。
這種測試的潛力令人興奮不已,,它可易化腦腫瘤的檢測與監(jiān)測過程,,在用于臨床之前,需要更深入地研究與發(fā)展,,可以肯定的是,,它對于某些病人特別有價值,,這些病人就是因?yàn)槟[瘤大小,、腫瘤位置或當(dāng)前醫(yī)療條件而不能手術(shù)的患者。
此研究對118例不同類型腦腫瘤患者進(jìn)行了探討,,研究表明,,腦脊液的microRNA概況可以用來確定惡性膠質(zhì)瘤的存在,惡性膠質(zhì)瘤是最常見的致命性腦腫瘤。這個測試?yán)玫氖莔icroRNA,,這是一種為各種疾病提供生物標(biāo)志的微小RNA分子,,其體液中的水平可以簡單廉價地準(zhǔn)確測量。同樣的過程可以用于檢測癌癥的存在,,該癌癥始發(fā)于身體其他部位并擴(kuò)散至大腦,,此外,這個過程也可以用來監(jiān)測治療中的腫瘤,。
關(guān)于此測試的專利正在申請中,,此研究由NIH項(xiàng)目([R01CA138734-01A1, K08CA124804, and ARRA 3P30CA023100-25S8])、Sontag基金會與James S. McDonnell基金會資助,。(生物谷bioon.com)
doi:10.1093/neuonc/nos074
PMC:
PMID:
MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity
Nadiya M. Teplyuk, Brit Mollenhauer, Galina Gabriely, Alf Giese, Ella Kim,Michael Smolsky, Ryan Y. Kim, Marlon G. Saria, Sandra Pastorino,Santosh Kesari and Anna M. Krichevsky
An accurate, nonsurgical diagnostic test for brain tumors is currently unavailable, and the methods of monitoring disease progression are not fully reliable. MicroRNA profiling of biological fluids has recently emerged as a diagnostic tool for several pathologic conditions. Here we tested whether microRNA profiling of cerebrospinal fluid (CSF) enables detection of glioblastoma, discrimination between glioblastoma and metastatic brain tumors, and reflects disease activity. We determined CSF levels of several cancer-associated microRNAs for 118 patients diagnosed with different types of brain cancers and nonneoplastic neuropathologies by quantitative reverse transcription PCR analysis. The levels of miR-10b and miR-21 are found significantly increased in the CSF of patients with glioblastoma and brain metastasis of breast and lung cancer, compared with tumors in remission and a variety of nonneoplastic conditions. Members of the miR-200 family are highly elevated in the CSF of patients with brain metastases but not with any other pathologic conditions, allowing discrimination between glioblastoma and metastatic brain tumors. Quantification of as few as 7 microRNAs in CSF enables differential recognition of glioblastoma and metastatic brain cancer using computational machine learning tools (Support Vector Machine) with high accuracy (91%-99%) on a test set of samples. Furthermore, we show that disease activity and treatment response can be monitored by longitudinal microRNA profiles in the CSF of glioblastoma and non-small cell lung carcinoma patients. This study demonstrates that microRNA-based detection of brain malignancies can be reliably performed and that microRNAs in CSF can serve as biomarkers of treatment response in brain cancers.