近日,來(lái)自斯坦福大學(xué)醫(yī)學(xué)院的研究者發(fā)現(xiàn),,從癌性腫瘤上脫落的細(xì)胞進(jìn)入血液中這種方式是一種多樣化的群體遺傳形式,,其中有些細(xì)胞中的部分基因處于開(kāi)啟狀態(tài),有某種潛能寄居在別的地方,,這樣一來(lái)就可以幫助癌細(xì)胞在組織間進(jìn)行擴(kuò)散,;另外的一些細(xì)胞完全具有不同的基因表達(dá)樣式,,在新的組織中不會(huì)惡性變化,并且趨于死亡,。有一些細(xì)胞可能會(huì)表達(dá)某些基因,,而且可以預(yù)測(cè)它們對(duì)于特定治療方法的效應(yīng),甚至是對(duì)于一個(gè)病人,,腫瘤細(xì)胞也可以在血液中不斷循環(huán),,并且劇烈地改變。
研究者新的研究發(fā)現(xiàn)揭示了多種類(lèi)型的治療方法將被用拉開(kāi)治療看似單一的癌癥,,而且研究也揭示了人類(lèi)癌癥的細(xì)胞系模型和癌癥病人身上的癌癥細(xì)胞不一樣,,需要進(jìn)一步進(jìn)行改良。這項(xiàng)研究于5月7日刊登在了國(guó)際著名雜志PLoS One上,,這篇文章是首次來(lái)關(guān)注游走腫瘤細(xì)胞的文章,,也是首次闡釋諸如這類(lèi)細(xì)胞在遺傳差異上的廣度。從單一的病人身上獲取單一的血液,,研究者們可以看到游走腫瘤細(xì)胞的非齊性總體,。
近乎一個(gè)世紀(jì)以來(lái),科學(xué)家們已經(jīng)知道游走腫瘤細(xì)胞(CTCs)是從腫瘤上脫落下來(lái),,并且隨著血液游走癌癥病人全身,,過(guò)去5年里,研究者們不斷追蹤著CTCs,,但是從血液中分離CTCs相當(dāng)困難,;研究者Jeffrey和其他研究者運(yùn)用他們2008年發(fā)明的新技術(shù),稱(chēng)為MagSweeper來(lái)從病人血液中分離出CTCs,,這種技術(shù)是基于癌細(xì)胞表面蛋白EpCAM的存在所建立的,。
Jeffrey表示,很多研究者是通過(guò)在細(xì)胞樣品中加入熒光抗體來(lái)識(shí)別并且研究在某一個(gè)時(shí)間點(diǎn)上CTCs一系列的基因或者蛋白質(zhì)的情況,,而他們對(duì)乳腺癌病人的CTCs進(jìn)行研究來(lái)檢測(cè)來(lái)自不同乳腺癌細(xì)胞單一細(xì)胞中的95個(gè)不同基因的表達(dá)情況,,研究者試圖既測(cè)出基因的表達(dá),,而且不將不同細(xì)胞混合在一起,,這樣一來(lái)研究者將會(huì)檢測(cè)出單個(gè)腫瘤細(xì)胞的不同表達(dá)差異。因此當(dāng)Jeffrey和他的同時(shí)們分離出了CTCs后,,他們轉(zhuǎn)向應(yīng)用了一種新的技術(shù)-實(shí)時(shí)定量PCR微流體芯片技術(shù),,來(lái)純化每一個(gè)CTC的遺傳物質(zhì),并且用高通量技術(shù)來(lái)測(cè)定95個(gè)基因的表達(dá)水平,。
Jeffrey表示,,在病人中,他們終止了31個(gè)主導(dǎo)基因的表達(dá),,通過(guò)觀察這些基因的表達(dá)水平,,他們看到了游走腫瘤細(xì)胞至少兩個(gè)不同的特殊類(lèi)群,,研究者將這些CTCs分為5個(gè)不同的類(lèi)群,每一個(gè)類(lèi)群都是不同基因組合的打開(kāi)或者關(guān)閉,。多樣性意味著腫瘤包含著多種類(lèi)型的癌細(xì)胞,,而且可以進(jìn)入血液中,來(lái)自病人的單一活組織檢測(cè)并不一定反應(yīng)所有的分子改變,,就比如說(shuō)對(duì)于一個(gè)乳腺癌患者,,有些CTCs標(biāo)記物HER2陽(yáng)性,而有些CTCs則陰性,;研究者對(duì)比了乳腺癌病人CTCs不同的基因檔案后發(fā)現(xiàn),,就像細(xì)胞系那樣,沒(méi)有一種人類(lèi)的CTCs有著相同的基因樣式,。
研究者的研究結(jié)果對(duì)于癌癥病人來(lái)說(shuō)并沒(méi)有直接的影響,,因?yàn)楦嗟墓ぷ餍枰獊?lái)進(jìn)行從而來(lái)發(fā)現(xiàn)不同類(lèi)型的CTCs對(duì)于不同的治療方法所產(chǎn)生的效應(yīng),以及是否對(duì)于臨床治療有效,,但是研究結(jié)果對(duì)于我們理解游走腫瘤細(xì)胞在血液中的作用尤為重要,,當(dāng)然,這也是第一次科學(xué)家用高通量基因分析技術(shù)來(lái)學(xué)習(xí)單一的CTCs,,為將來(lái)學(xué)習(xí)細(xì)胞的多樣性研究提供了一些基礎(chǔ)和線索,。(生物谷:T.Shen<微博>編譯)
Copyright ©版權(quán)歸生物谷/T.Shen所有,若未得到T.Shen許可,,請(qǐng)勿轉(zhuǎn)載,。
doi:10.1371/journal.pone.0033788
PMC:
PMID:
Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines
Ashley A. Powell1#¤a, AmirAli H. Talasaz2,3#¤b, Haiyu Zhang1#, Marc A. Coram4, Anupama Reddy5¤c, Glenn Deng1¤d, Melinda L. Telli6, Ranjana H. Advani6, Robert W. Carlson6, Joseph A. Mollick6, Shruti Sheth6, Allison W. Kurian6, James M. Ford6, Frank E. Stockdale6, Stephen R. Quake7, R. Fabian Pease3, Michael N. Mindrinos2, Gyan Bhanot5,8,9, Shanaz H. Dairkee1,10*, Ronald W. Davis2*, Stefanie S. Jeffrey1*
Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery.
Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy.
Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of ‘liquid biopsies’ to better model drug discovery.