近日,,美國萊斯大學(xué)和中國南開大學(xué)科學(xué)家合作,首次對6種鈀基和鐵基催化劑清除致癌物三氯乙烯(TCE)的能力進(jìn)行了對比測試,,發(fā)現(xiàn)鈀破壞TCE的能力比鐵要快得多,,甚至高出鐵粉10億倍,。研究人員指出,,對于開展大規(guī)模TCE催化治理實(shí)驗(yàn)來說,,這一發(fā)現(xiàn)有助人們從成本和效率兩方面綜合考慮,實(shí)現(xiàn)成本最優(yōu)化,。相關(guān)論文將發(fā)表在8月出版的《應(yīng)用催化B:環(huán)境》(Applied Catalysis B: Environmental )期刊上,。
TCE廣泛用作脫脂劑和溶劑,已經(jīng)有許多地區(qū)污染了地下水,。在美國環(huán)保署有毒廢棄物堆場污染清除基金國家優(yōu)先項目列表中,,超過一半廢品堆場發(fā)現(xiàn)含有TCE,單是清除地下水中TCE的成本估計要超過50億美元,。
TCE分子中的碳—氯鍵非常穩(wěn)定,,這在工業(yè)上很有用,,但卻對環(huán)境不利,。“要打破碳—氯化學(xué)鍵非常困難,而處理TCE要求只打破某些鍵而不是所有碳—氯鍵,,否則可能帶來更危險的副產(chǎn)物如氯乙烯,。這是個大難題。”論文作者之一,、萊斯大學(xué)化學(xué)與生物分子工程教授邁克爾·翁說,,“通行方法是不破壞這些鍵,而用氣體或碳吸收方法物理性除去污染地下水中的TCE,。這些方法容易實(shí)施卻成本很高,。”后來人們發(fā)現(xiàn)純鐵和純鈀能將TCE轉(zhuǎn)變?yōu)闊o毒物質(zhì),以往的金屬降解TCE是讓其在水中發(fā)生腐蝕作用,,但可能產(chǎn)生氯乙烯,;后來人們用金屬作催化劑來促進(jìn)碳—氯鍵斷裂,其本身并不與TCE反應(yīng)。因?yàn)殍F比鈀要廉價得多,,更容易操作,,因此行業(yè)內(nèi)已普遍用鐵來除去TCE,鈀只在實(shí)驗(yàn)室中使用,。
邁克爾·翁和曾在萊斯大學(xué)做訪問學(xué)者的中國南開大學(xué)李淑景(音譯)等人對6種鐵基和鈀基催化劑進(jìn)行了一系列實(shí)驗(yàn),,包括兩種鐵納米粒子、兩種鈀納米粒子,,其中就有研究小組2005年開發(fā)的用于TCE治理的金—鈀納米粒子催化劑,、鐵粉和氧化鈀鋁粉末。
他們測試了6種催化劑分解掉含TCE的水溶液中90%的TCE所需時間,。結(jié)果是,,鈀催化劑只花了不到15分鐘,兩種鐵納米粒子超過25小時,,而鐵粉則超過了10天,。李淑景說:“以往我們知道鈀的催化速度更快,但經(jīng)過對比測試才知道能快這么多,。”(生物谷Bioon.com)
doi:10.1016/j.apcatb.2012.05.025
PMC:
PMID:
Environmental - Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants
Shujing Lia, b, d, Yu-Lun Fangb, Chris D. Romanczukb, Zhaohui Jina, Tielong Lia, Michael S. Wongb,
The removal of undesired chlorinated hydrocarbon contaminants through chemical destruction using ex situ Pd-based catalytic or in situ Fe-based reductive nanomaterials offers unique advantages over current physical displacement methods for groundwater treatment. While these two types of chemical methods has been studied in-depth in recent years, their respective hydrodechlorination and dechlorination transformations have not been analyzed together before. Here, the reactivities of Pd catalysts and Fe reductants were experimentally assessed for trichloroethene (TCE) degradation using room-temperature, atmospheric-pressure, dihydrogen-headspace-filled batch reactor studies under buffered and non-buffered conditions. Pseudo-first order reaction rate constants at pH 7 spanned 9 decades: 1.2 × 104, 1.0 × 103, 4.5 × 102, 2.41 × 10?4, 4.2 × 10?4, and 7.09 × 10?6 L/gactive-metal/min for Pd-on-Au nanoparticles (Pd/Au NPs), Pd NPs, Pd-on-alumina powder, and two nano-sized forms and one micron-sized form of commercial zerovalent iron, respectively. With rates measured in the range of commonly reported values, the Fe-based materials produced ethane, ethene, and vinyl chloride; ethene hydrogenated into ethane at sufficiently long reaction times. The much more active Pd-based materials produced ethane as the primary TCE degradation reaction product. This study presents, for the first time, a quantitative comparison of TCE degradation rates determined under identical experimental conditions.