2012年8月23日 訊 /生物谷BIOON/ --一一項(xiàng)最新在老鼠動(dòng)物模型試驗(yàn)中的研究證實(shí)一種已經(jīng)被批準(zhǔn)的并被使用了幾十年的仿制藥可作為一種潛在的癌癥治療藥物,其通過(guò)破壞腫瘤的血液供應(yīng)來(lái)使得腫瘤體積縮小。噻菌靈是一個(gè)通用的又美國(guó)FDA批準(zhǔn)的廉價(jià)抗真菌的藥物,,其是一種口服藥,已臨床使用超過(guò)40年,。截至目前為止,該藥物并為用來(lái)來(lái)治療癌癥,。
美國(guó)德州大學(xué)奧斯汀分??茖W(xué)家在尋找酵母、青蛙,、老鼠以及人類進(jìn)化中的關(guān)系時(shí)意外發(fā)現(xiàn)藥物潛在治療癌癥的功效,,這一發(fā)現(xiàn)幾乎是出于偶然。Hye Ji Cha, Edward Marcotte, John Wallingford和同事稱其具有"血管阻斷劑"的功能,,相關(guān)研究論文發(fā)表在PLoS Biology雜志上,,該抗真菌藥能破壞新生成血管。
隨著腫瘤的發(fā)展,,腫瘤需壯大自己的血管網(wǎng)絡(luò)來(lái)維持本身不受控制的生長(zhǎng),。所以作為一個(gè)潛在的腫瘤治療手段,任何有關(guān)餓死腫瘤血液供應(yīng)的方法都是值得探討的,。在小鼠動(dòng)物試驗(yàn)中,,噻苯咪唑(thiabendazole)能抑制纖維肉瘤腫瘤血管的生長(zhǎng),其抑制率達(dá)到了50%,,并且它也減緩腫瘤的生長(zhǎng),。
該研究表明,,噻苯咪唑很可能與其他化療手段相結(jié)合用于臨床腫瘤治療。在早先的研究中,,化學(xué)教授Marcotte和他的團(tuán)隊(duì)已經(jīng)針對(duì)基因,,因?yàn)閱渭?xì)胞酵母菌和脊椎動(dòng)物有著常見(jiàn)的共同的進(jìn)化路徑。在沒(méi)有血管的酵母中,,基因控制著細(xì)胞的應(yīng)激反應(yīng),。在脊椎動(dòng)物中,基因逐漸形成了一個(gè)新的角色:控制血管生成的過(guò)程,,形成新的靜脈和動(dòng)脈。
Marcotte說(shuō),,他們有一種預(yù)感,,如果他們分析了這些基因,他們也許能找到靶向酵母中該基因通路的藥物,,該藥物可作為血管生成抑制劑藥物,。研究人員發(fā)現(xiàn)藥物能抑制青蛙胚胎發(fā)育過(guò)程中以及實(shí)驗(yàn)室培養(yǎng)的人血管的血管生長(zhǎng)。之后,,他們做了試驗(yàn),,發(fā)現(xiàn)該抗真菌藥物能抑制小鼠纖維肉瘤腫瘤的血液供應(yīng),縮小腫瘤體積,。
該小組目前正計(jì)劃與臨床腫瘤學(xué)家在臨床試驗(yàn)中測(cè)試噻苯咪唑?qū)Π┌Y的治療效果,。來(lái)自不同的組織包括霍華德-休斯醫(yī)學(xué)研究所、得克薩斯州癌癥預(yù)防研究所,、韋爾奇基金會(huì)和美國(guó)國(guó)立衛(wèi)生研究院的資金支持了該項(xiàng)研究,。(生物谷:Bioon.com)
編譯自:Common Antifungal Drug Shrinks Tumors
doi:10.1371/journal.pbio.1001379
PMC:
PMID:
Evolutionarily Repurposed Networks Reveal the Well-Known Antifungal Drug Thiabendazole to Be a Novel Vascular Disrupting Agent
Hye Ji Cha1, Michelle Byrom1, Paul E. Mead2, Andrew D. Ellington1,3, John B. Wallingford1,4*, Edward M. Marcotte1,3*
Studies in diverse organisms have revealed a surprising depth to the evolutionary conservation of genetic modules. For example, a systematic analysis of such conserved modules has recently shown that genes in yeast that maintain cell walls have been repurposed in vertebrates to regulate vein and artery growth. We reasoned that by analyzing this particular module, we might identify small molecules targeting the yeast pathway that also act as angiogenesis inhibitors suitable for chemotherapy. This insight led to the finding that thiabendazole, an orally available antifungal drug in clinical use for 40 years, also potently inhibits angiogenesis in animal models and in human cells. Moreover, in vivo time-lapse imaging revealed that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Importantly, we also show that thiabendazole slows tumor growth and decreases vascular density in preclinical fibrosarcoma xenografts. Thus, an exploration of the evolutionary repurposing of gene networks has led directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans.