賓夕法尼亞大學(xué)醫(yī)學(xué)院的研究者發(fā)現(xiàn)了有關(guān)微管的形成機(jī)制:這種參與細(xì)胞形態(tài)塑造,、細(xì)胞運(yùn)動(dòng)和細(xì)胞復(fù)制的重要蛋白,,在類似“馬達(dá)分子”(motor)和“制停分子”(brake)的兩種蛋白的調(diào)控下,,形成最終正確結(jié)構(gòu)。如果微管蛋白的結(jié)構(gòu)沒有正確形成,,一些細(xì)胞學(xué)上最為基本的功能可能會(huì)發(fā)生紊亂,,如細(xì)胞分裂和物質(zhì)轉(zhuǎn)運(yùn),,而宏觀上看這種錯(cuò)誤的大范圍發(fā)生容易引發(fā)癌癥和癡呆(*)等病癥。此外,,這篇研究性文章發(fā)表于1月期的《Cell》雜志的封面上,,由此可見它所闡述的細(xì)胞學(xué)問題的重要地位。
“在此之前,學(xué)者們都是單獨(dú)研究‘馬達(dá)分子’和‘制停分子’的,,” 細(xì)胞生物學(xué)副教授Phong Tran(文章作者)介紹說,,“此項(xiàng)研究讓我們有一個(gè)更為全面的了解。”
作為一種結(jié)構(gòu)性蛋白,,微管蛋白最為出名的功能可能在于它塑造了不同類型的細(xì)胞,,形成了細(xì)胞分裂中必不可少的紡錘體,;分子馬達(dá)運(yùn)輸營養(yǎng)物質(zhì)、廢物蛋白和細(xì)胞內(nèi)其他物質(zhì)(神經(jīng)遞質(zhì))的時(shí)候是沿著微管移動(dòng)的,,就好像沿著細(xì)胞內(nèi)的 “鐵軌”在移動(dòng),。
在此項(xiàng)Cell研究中,,研究者以裂殖酵母(**)細(xì)胞為實(shí)驗(yàn)材料,展示了微管蛋白通過平衡分子馬達(dá)klp2p的滑動(dòng)和微管相關(guān)蛋白(***)ase1p的制停,,實(shí)現(xiàn)了微管的端對(duì)端有序排列(****),。具體地,研究者展示了已經(jīng)存在的微管蛋白成為“母”蛋白,,作為新微管形成的平臺(tái),。這個(gè)新的“子”微管逐漸生長,并在“母”微管上滑動(dòng),。當(dāng)“子”微管生長超越了“母”微管的端頭后,,形成了兩個(gè)微管,,并由行使交聯(lián)作用的MAP ase1p蛋白將它們連接起來。
“可以將‘子’微管看成是‘母’微管鐵道上的一個(gè)短列車,,” Tran解釋道,,“分子馬達(dá)就是這個(gè)列車的引擎,但是同時(shí)列車上還有著貨物——制停分子也會(huì)不斷增加,,減緩了列車的行進(jìn),。但是當(dāng)列車到達(dá)軌道的末端后,它依舊粘附在‘母’微管的端頭上,。在這個(gè)末端,,‘子’微管就不再移動(dòng),從而表現(xiàn)出該區(qū)域有重疊發(fā)生,。我們的工作表明細(xì)胞通過協(xié)調(diào)分子馬達(dá)和制動(dòng)蛋白的功能,,讓規(guī)定長度的微管結(jié)構(gòu)保持穩(wěn)定。”
如果這種微管結(jié)構(gòu)因?yàn)橹仆,;蝰R達(dá)失靈而發(fā)生錯(cuò)誤,,細(xì)胞分裂和細(xì)胞內(nèi)運(yùn)輸都可能出現(xiàn)紊亂,可能會(huì)引發(fā)癌癥和癡呆,。“這是首次展示MAPs和馬達(dá)蛋白的協(xié)同作用,,” Tran說道,“這是一項(xiàng)非常重要的研究成果,,可以讓研究微管的學(xué)者們重新考慮下一步的研究,。”
部分英文原文:
Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast
Marcel E. Janson,1,3 Rose Loughlin,2 Isabelle Loïodice,1 Chuanhai Fu,1 Damian Brunner,2 François J. Nédélec,2, and Phong T. Tran1,
1 Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Cell Biology and Biophysics Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
Microtubule (MT) nucleation not only occurs from centrosomes, but also in large part from dispersed nucleation sites. The subsequent sorting of short MTs into networks like the mitotic spindle requires molecular motors that laterally slide overlapping MTs and bundling proteins that statically connect MTs. How bundling proteins interfere with MT sliding is unclear. In bipolar MT bundles in fission yeast, we found that the bundler ase1p localized all along the length of antiparallel MTs, whereas the motor klp2p (kinesin-14) accumulated only at MT plus ends. Consequently, sliding forces could only overcome resistant bundling forces for short, newly nucleated MTs, which were transported to their correct position within bundles. Ase1p thus regulated sliding forces based on polarity and overlap length, and computer simulations showed these mechanisms to be sufficient to generate stable bipolar bundles. By combining motor and bundling proteins, cells can thus dynamically organize stable regions of overlap between cytoskeletal filaments.
更多原文鏈接:http://www.cell.com/content/article/fulltext?uid=PIIS0092867407000487