《自然》雜志7月9日在線發(fā)表由中國科學院生物物理研究所研究員劉迎芳領導的研究組和南開大學饒子和院士領導的南開大學—清華大學—生物物理所聯(lián)合研究組,,共同完成的一項有關禽流感病毒聚合酶結構的研究,,在國際上率先揭示出流感病毒聚合酶關鍵部分PA亞基與PB1多肽復合體的精細三維結構,填補了禽流感病毒聚合酶結構領域研究的空白,。這一結構的解析,,為研究禽流感病毒的復制機制,,以及設計抗流感病毒的藥物提供了真實可用的模型。
該研究得到了國家自然科學基金委員會,、科技部和中國科學院的支持,,中國農(nóng)業(yè)科學院哈爾濱獸醫(yī)研究所研究員陳化蘭和中國農(nóng)業(yè)科學院中檢所研究員于康震提供了禽流感病毒 ( H5N1/goose/Gu-angdong/1996) 的cDNA。
近年來,由H5N1亞型禽流感病毒引起的疫情的廣泛傳播對人類健康造成全球性重大威脅,。由于病毒的不斷變異,,開發(fā)新型抗流感藥物已成為世界科學界一項極為緊迫的重大研究課題。其中,,揭示與流感病毒密切相關的蛋白質(zhì)的三維結構,,不僅對揭示流感病毒復制機制具有重要科學意義,而且對開發(fā)抗流感病毒藥物具有重要價值,。
據(jù)劉迎芳介紹,,流感病毒基因組含有8個RNA片段,已知可以編碼11種病毒蛋白質(zhì),。其中,,由PA、PB1和PB2這3個亞基組成的聚合酶復合體是負責病毒基因組RNA復制以及病毒mRNA轉錄的關鍵組分,,同時由于它的高度保守性,、低突變率,成為抗流感病毒藥物設計的重要靶點,。多年來的研究認為,,PB1是病毒RNA聚合酶的催化亞基,負責病毒RNA的復制以及轉錄,;PB2是負責以一種稱為“Snatch”的方式奪取宿主mRNA的CAP帽子結構用于病毒mRNA轉錄,;而PA亞基不但參與病毒復制過程,而且還參與病毒RNA轉錄,、內(nèi)切核酸酶活性,、具有蛋白酶活性以及參與病毒粒子組裝等多種病毒活動過程,因而在整個聚合酶復合體的研究中顯得格外重要,。
研究人員利用全新的思路,,解析了PA與PB1氨基端多肽蛋白復合體的2.9埃分辨率晶體結構。該結構清晰顯示了PA與PB1多肽相互作用模式,,發(fā)現(xiàn)該作用位點的氨基酸殘基在流感病毒中高度保守,,這為廣譜抗流感(包括人流感和禽流感)藥物研究提供了一個理想的靶蛋白。同時,,根據(jù)該復合體結構以及已知的一些蛋白突變體研究結果,,推測了PA亞基在聚合酶中的作用,為進一步研究提供了分子基礎,。
有關專家表示,,我國科學家在這一領域取得突破性進展,對揭示流感病毒聚合酶作用機制以及開展針對流感病毒藥物設計工作都具有十分重要的意義,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature,,doi:10.1038/nature07120,,Xiaojing He, Zihe Rao & Yingfang Liu
Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus
Xiaojing He1, Jie Zhou1, Mark Bartlam2, Rongguang Zhang3, Jianyuan Ma1, Zhiyong Lou4, Xuemei Li1,4, Jingjing Li1, Andrzej Joachimiak3, Zonghao Zeng1, Ruowen Ge5, Zihe Rao1,2,4 & Yingfang Liu1
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences and Tianjin State Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
Department of Biological Sciences, National University of Singapore, 117543 Singapore
Correspondence to: Zihe Rao1,2,4Yingfang Liu1 Correspondence and requests for materials should be addressed to Z.R. (Email: [email protected]) or Y.L. (Email: [email protected]).
The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health1. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs2. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding3, 4; PA is implicated in RNA replication5, 6, 7, 8, 9, 10 and proteolytic activity11, 12, 13, 14, although its function is less clearly defined. Here we report the 2.9 ångström structure of avian H5N1 influenza A virus PA (PAC, residues 257–716) in complex with the PA-binding region of PB1 (PB1N, residues 1–25). PAC has a fold resembling a dragon's head with PB1N clamped into its open 'jaws'. PB1N is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1N to PAC at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PAC with the 3 reovirus polymerase structure, and docking the PAC structure into an available low resolution electron microscopy map.