英美研究人員在1月31日的《自然》雜志上報告說,,他們合作進行的一項最新研究模擬出整合酶的三維結構。整合酶在包括艾滋病病毒等逆轉錄酶病毒中可以找到,,并且充當了艾滋病病毒在人體內(nèi)復制時的“幫兇”,。這項重大突破有助于科學家解決困擾了艾滋病研究領域長達20年的一個難題,從而找到更好的治療艾滋病的方法,。
當艾滋病病毒感染人體時,,通常會利用整合酶當工具,將病毒的遺傳信息“復制粘貼”到其DNA中,,并將病毒DNA與人體DNA整合,。很多科學家都曾嘗試破解這種與病毒DNA綁定的整合酶的三維結構,結果都無功而返,。新的抗逆轉錄酶病毒藥物很多是利用抑制整合酶的功能來達到治療艾滋病的目的,,但科學家們并沒有確切了解這些藥物發(fā)揮作用的機制以及增進藥效的機理。
由于只有通過獲取質(zhì)量較多的晶體才能確定整合酶的結構,,在此次研究中,,帝國理工學院和哈佛大學的研究人員聯(lián)手,從一種被稱為原型泡沫病毒(PFV)的逆轉錄病毒中“借”來了整合酶,,并用其來制造晶體,。雖然目前科學界對原型泡沫病毒所知不多,但基于已有認識,,研究人員相信,,這種版本的整合酶與艾滋病病毒中的整合酶在結構和功能上非常相似。
研究人員在4年中進行了4萬多次試驗,,最終獲得了7種晶體,,而其中只有一種晶體的質(zhì)量足夠多,使得他們可以確定整合酶的三維結構,。利用鉆石光源中心的大型同步加速器,,研究人員采集了晶體的X射線衍射數(shù)據(jù),從而將結構進行測定,。并于隨后首次觀察到這些抗逆轉錄酶病毒藥物如何與整合酶結合并阻斷其活性,。
這項研究顯示,,艾滋病病毒中整合酶具有完全不同于之前所預期的結構,其破解意味著科學家自此可以充分了解相關藥物的作用原理,,以期提高療效并防止艾滋病病毒產(chǎn)生抗藥性,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature advance online publication 31 January 2010 | doi:10.1038/nature08784
Retroviral intasome assembly and inhibition of DNA strand transfer
Stephen Hare1,3, Saumya Shree Gupta1,3,4, Eugene Valkov1,4, Alan Engelman2 & Peter Cherepanov1
1 Division of Medicine, Imperial College London, St-Mary’s Campus, Norfolk Place, London W2 1PG, UK
2 Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
3 These authors contributed equally to this work.
4 Present addresses: Hannover Biomedical Research School, D-30625 Hannover, Germany (S.S.G.); School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia (E.V.).
Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein–DNA and protein–protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.