風(fēng)道中吸蜜蝙蝠產(chǎn)生的渦流場(chǎng),紅色表示強(qiáng)渦流,藍(lán)色表示弱渦流。
生物谷報(bào)道:瑞典科學(xué)家最新的一項(xiàng)研究發(fā)現(xiàn),,蝙蝠和鳥類飛行的空氣動(dòng)力學(xué)機(jī)制存在著不同,在飛行速度較慢時(shí),,蝙蝠扇動(dòng)翅膀的模式更接近于黃蜂,。這種差異使蝙蝠具有極佳機(jī)動(dòng)性,能夠在高速飛行中快速轉(zhuǎn)彎,,同時(shí)也能夠在低速飛行時(shí)獲得更多的升力,。這一研究結(jié)論將有助于新型飛行器的設(shè)計(jì)。5月11日的《科學(xué)》雜志以封面文章的形式報(bào)道了這一研究成果,。
領(lǐng)導(dǎo)該研究的是瑞典隆德大學(xué)(Lund University)的Anders Hedenström,通過(guò)對(duì)風(fēng)道中吸蜜蝙蝠(nectar-feeding bat)翼下的氣流形狀進(jìn)行拍攝研究,,科學(xué)家發(fā)現(xiàn),,蝙蝠在飛行過(guò)程中產(chǎn)生的旋轉(zhuǎn)渦流比鳥類更加復(fù)雜,而且在上行程(翼翅向上向后的運(yùn)動(dòng)過(guò)程)中會(huì)產(chǎn)生更大的力,。
之前的研究表明,,鳥類在飛行時(shí)兩翼后側(cè)分別產(chǎn)生的空氣渦流會(huì)發(fā)生合并,形成單一的氣流環(huán),,這樣能夠盡可能地減少飛行中產(chǎn)生的擾動(dòng)和身體后方的拉力,。而最新的研究表明,蝙蝠的飛行機(jī)制并非如此,。蝙蝠膜狀翼后方產(chǎn)生的渦流不會(huì)合并,,兩翼基本保持獨(dú)立運(yùn)行。盡管這樣會(huì)減少空氣動(dòng)力作用的效率,,但會(huì)給蝙蝠帶來(lái)其他的好處——快速轉(zhuǎn)彎,。英國(guó)牛津大學(xué)動(dòng)物行為學(xué)家Graham Taylor對(duì)此表示贊同,他說(shuō),,“很明顯,,蝙蝠是很棒的飛行者。”
新的研究同時(shí)表明,,在飛行速度較低時(shí),,蝙蝠翅膀向上扇動(dòng)的過(guò)程中會(huì)產(chǎn)生很大的力。盡管過(guò)強(qiáng)的力對(duì)鳥類而言絕非好事(鳥類通過(guò)將翅端羽毛分開來(lái)刻意避免這一狀況),,但對(duì)蝙蝠卻有特殊的意義,。Hedenström 表示,蝙蝠翅膀向下扇回時(shí)能夠產(chǎn)生較大的升力,,這一飛行方式很像大黃蜂,。蝙蝠兩翼會(huì)在扇動(dòng)過(guò)程中產(chǎn)生彎曲,這就好比航海時(shí)水手利用風(fēng)帆向預(yù)定的方向前進(jìn),。
Hedenström推測(cè),,鳥類和吸蜜蝙蝠的飛行機(jī)制之所以會(huì)有所不同,,可能是由于后者沒有尾巴,因此無(wú)法利用鳥類的渦流模式進(jìn)行飛行,。
原始出處:
Science 11 May 2007:
Vol. 316. no. 5826, pp. 894 - 897
DOI: 10.1126/science.1142281
Bat Flight Generates Complex Aerodynamic Tracks
A. Hedenström,1* L. C. Johansson,1 M. Wolf,1 R. von Busse,2 Y. Winter,2,3 G. R. Spedding4
The flapping flight of animals generates an aerodynamic footprint as a time-varying vortex wake in which the rate of momentum change represents the aerodynamic force. We showed that the wakes of a small bat species differ from those of birds in some important respects. In our bats, each wing generated its own vortex loop. Also, at moderate and high flight speeds, the circulation on the outer (hand) wing and the arm wing differed in sign during the upstroke, resulting in negative lift on the hand wing and positive lift on the arm wing. Our interpretations of the unsteady aerodynamic performance and function of membranous-winged, flapping flight should change modeling strategies for the study of equivalent natural and engineered flying devices.
1 Department of Theoretical Ecology, Lund University, SE-223 62 Lund, Sweden.
2 Department of Biology, University of Munich, Germany.
3 Max-Planck Institute for Ornithology, Seewiesen, Germany.
4 Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089–1191, USA.
Present address: Department of Biology, Bielefeld University, D-335 01 Bielefeld, Germany.
* To whom correspondence should be addressed. E-mail: [email protected]