卡內基學院全球生態(tài)系和德國尤里希研究中心的科學家一項最新的合作研究顛覆了傳統(tǒng)的關于蒸騰作用過程中氣孔結構調節(jié)葉片水蒸氣流失的觀念。研究人員發(fā)現(xiàn)輻射是葉子內部物理過程的驅動力,。
這項研究中關于植物氣孔的一些深入認識將會對天氣預測,,環(huán)境變化,農業(yè),,水文地理等產生巨大的影響。該研究結果發(fā)布在2010年7月12日Proceedings of the National Academy of Sciences雜志的在線版本上,。
氣孔能夠調節(jié)光合作用所需的二氧化碳流入,,以及蒸騰作用中的水蒸氣外流。蒸騰作用使我們的大氣環(huán)境保持清爽和濕潤,,調節(jié)環(huán)境,,同時增加降雨。氣孔影響植物從大氣中吸收二氧化碳的比率,,從而影響植物的生產率,,以及大氣中二氧化碳的濃度。因此,,理解氣孔對于研究氣候變化來說是很重要的,。
目前科學家使用的用于氣孔反應描述的環(huán)境變化模型是基于統(tǒng)計分析的。這種方法不是基于對氣孔調節(jié)機制的理解,,因此不能很好的推斷環(huán)境因素,。科學家對植物氣孔的研究已經(jīng)有300多年了,,但是令人驚奇的是,,關于氣孔的調控機制還沒有很好的理解。這項研究的共同作者Joseph Berry表示,。
更多閱讀進入生物谷 www.bioon.net
在這項研究中,,科研人員首次考察了能量以及葉子外表面水蒸氣的交換機制,結果發(fā)現(xiàn)這與葉子內部的過程相關,,色素從輻射中吸收的能量以及葉子內部的水分含量影響了氣孔調控水分的程度,。
研究人員以向日葵葉子作為觀察對象,并使用強光照射(含有或濾過近紅外光),。Berry觀察到,,當近紅外光沒有被過濾時,氣孔會打開,,間接刺激光合作用,。在相同能量輸入的情況下,不同顏色的光照,,氣孔打開程度相似,。此外,更多的證據(jù)表明熱是驅動因素,。在相同的條件下,,科學家使用其他5種植物進行了重復試驗,。同時,他們還開發(fā)了一個基于能量平衡的葉子系統(tǒng)模型,。模型的試驗結果和實驗室結果相似的,。
根據(jù)試驗和模型結果,研究人員推測,,由植物保衛(wèi)細胞形成的氣孔具有精確的敏感性和信息處理系統(tǒng),,它們利用光和環(huán)境中的其他信號調整氣孔。這項研究的突破點則是首次證實了氣孔水分流失率的調控與葉子的內部物理過程有關,。(生物谷Bioon.net)
生物谷推薦原文出處:
PNAS doi: 10.1073/pnas.0913177107
Control of transpiration by radiation
Roland Pieruschkaa,b, Gregor Hubera, and Joseph A. Berryb,1
aForschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosph?re, 52425 Jülich, Germany; and
bCarnegie Institution of Washington, Department of Global Ecology, Stanford, CA 94305
The terrestrial hydrological cycle is strongly influenced by transpiration—water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO2 and other factors.