2012年1月3日,,中科院心理研究所蔣毅課題組在美國科學(xué)院院刊PNAS上發(fā)表最新研究論文"Life motion signals lengthen perceived temporal duration",,研究人員利用時距分辨任務(wù)發(fā)現(xiàn)生物運動信息能夠延長時距知覺,并且這種時距延長效應(yīng)與生物運動的整體形狀信息以及觀察者的主觀意識無關(guān),。
研究表明生物運動具有區(qū)別于非生物運動的時間編碼特性,,揭示了有可能存在一個特殊的專門針對生物運動信息加工的時間編碼機制,有助于人類預(yù)測其他生物體的行動從而能更好地適應(yīng)環(huán)境,。
精細(xì)尺度范圍內(nèi)時間信息(數(shù)百毫秒到數(shù)秒)的知覺加工對人類日?;顒佑兄陵P(guān)重要的作用,然而關(guān)于它的加工機制仍是一個未解之謎,。
研究采用光點生物運動刺激(point-light biological motion),,即運動信息僅是由附著在人或者動物的頭部和一些重要關(guān)節(jié)上的光點運動組成。結(jié)果顯示,,在物理呈現(xiàn)時間相等的情況下,,觀察者知覺到的正立生物運動刺激的呈現(xiàn)時間要長于倒立的控制運動刺激。有趣的是,,對于觀察者不熟悉的局部生物運動刺激(將生物運動的整體形狀信息完全置亂僅保留局部運動信息)也存在同樣的時距延長效應(yīng),,而當(dāng)去除生物運動中所包含的生物特征時,該效應(yīng)完全消失,這表明所觀察到的時間知覺的延長效應(yīng)是由生物運動本身的生物特性所誘發(fā),。
該研究受國家重點基礎(chǔ)研究發(fā)展計劃,,國家自然科學(xué)基金,中科院“百人計劃”項目,,中科院心理研究所科研啟動經(jīng)費以及中科院心理健康重點實驗室經(jīng)費的資助,。(生物谷Bioon.com)
doi:10.1073/pnas.1115515109
PMC:
PMID:
Life motion signals lengthen perceived temporal duration.
Wang L, Jiang Y.
Point-light biological motions, conveying various different attributes of biological entities, have particular spatiotemporal properties that enable them to be processed with remarkable efficiency in the human visual system. Here we demonstrate that such signals automatically lengthen their perceived temporal duration independent of global configuration and without observers' subjective awareness of their biological nature. By using a duration discrimination paradigm, we showed that an upright biological motion sequence was perceived significantly longer than an inverted but otherwise identical sequence of the same duration. Furthermore, this temporal dilation effect could be extended to spatially scrambled biological motion signals, whose global configurations were completely disrupted, regardless of whether observers were aware of the nature of the stimuli. However, such an effect completely disappeared when critical biological characteristics were removed. Taken together, our findings suggest a special mechanism of time perception tuned to life motion signals and shed new light on the temporal encoding of biological motion.