史丹佛大學(xué)(Stanford University)的榮譽(yù)教授James P. Collman及其研究團(tuán)隊(duì)細(xì)究CcO(cytochrome c oxidase)酵素的活性區(qū),,并探討其化學(xué)反應(yīng)是如何進(jìn)行的,,有助于讓科學(xué)家更了解因CcO變異而引起的癌癥或疾病,,同時(shí)也發(fā)現(xiàn)這項(xiàng)研究具有新型替代性能源開發(fā)的雛型,,此研究發(fā)表于3月16日的Science期刊,。
許多生物,,包括人類在內(nèi)是由細(xì)胞內(nèi)的粒腺體驅(qū)動(dòng)能量產(chǎn)生,,粒腺體內(nèi)產(chǎn)生能量的位置則在電子傳遞鏈(electron transport chain,,簡(jiǎn)稱ETC),, ETC由許多不同的蛋白質(zhì)所組成,負(fù)責(zé)電子的傳遞,,最后一個(gè)電子接收者能將電子轉(zhuǎn)變?yōu)檠跖c水,,并釋放出ATP及熱。而負(fù)責(zé)接收電子的最后一個(gè)蛋白就是CcO,,它會(huì)將接收到的4個(gè)電子移轉(zhuǎn)給氧,,然后轉(zhuǎn)換成兩分子的水,若CcO接收到的電子不足4個(gè)就會(huì)產(chǎn)生還原態(tài)的氧,,例如:superoxide或是hydrogen peroxide,,這些活性氧常在癌細(xì)胞或壞死的心臟以及阿茲海默癥病人腦部被發(fā)現(xiàn)。慶幸的是,,CcO發(fā)生錯(cuò)誤的機(jī)率很低,,幾乎都能成功的將4個(gè)電子移轉(zhuǎn)給氧,成功率超過99%,。
為了更深入的了解CcO是如何精確的完成其工作,,Collman研究團(tuán)隊(duì)花費(fèi)數(shù)年的時(shí)間,利用有機(jī)化合物創(chuàng)造了一個(gè)人造版的酵素活性區(qū),,這個(gè)活性區(qū)包含了32個(gè)精心設(shè)計(jì)的化學(xué)反應(yīng)步驟,,其中有3個(gè)重要的活性中心,分別是phenol,、鐵原子及銅原子中心,,能完整的將4個(gè)電子移轉(zhuǎn)給氧,然后轉(zhuǎn)換成水分子,。Collman教授說:目前4個(gè)電子是如何移轉(zhuǎn)到氧的機(jī)制仍是個(gè)謎團(tuán),。
Collman說:由于一次只能傳遞一個(gè)電子到酵素,而電子消耗的速度又太快,,因此研究人員想出一個(gè)辦法,,他們?cè)邳S金電極上附加一個(gè)液態(tài)晶體薄膜,,使得電子的傳遞速度變得較慢且有連續(xù)性,能讓化學(xué)反應(yīng)得以順利進(jìn)行,。當(dāng)研究人員解決了連續(xù)性電子傳遞的問題后,,系統(tǒng)性的將3個(gè)反應(yīng)中心依序移除,結(jié)果發(fā)現(xiàn)酵素受損相當(dāng)嚴(yán)重,,并出現(xiàn)大量的活性氧,,顯示這3個(gè)活性中心對(duì)酵素功能都十分重要。
Devaraj表示:這項(xiàng)新研究除了可以應(yīng)用到其它酵素活性區(qū)的研究,,也可以藉由對(duì)CcO功能區(qū)的了解,,開發(fā)具有能源應(yīng)用價(jià)值的燃料電池,現(xiàn)階段的目標(biāo)是要找到更好的催化劑來催化反應(yīng),,這樣就能得到更具能量的燃料電池,。
(資料來源 : Bio.com)
部分英文原文:
Science 16 March 2007:
Vol. 315. no. 5818, pp. 1565 - 1568
DOI: 10.1126/science.1135844
A Cytochrome c Oxidase Model Catalyzes Oxygen to Water Reduction Under Rate-Limiting Electron Flux
James P. Collman,* Neal K. Devaraj, Richard A. Decréau, Ying Yang, Yi-Long Yan, Wataru Ebina, Todd A. Eberspacher, Christopher E. D. Chidsey*
We studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fea3, CuB, and Tyr244. To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer–coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water. This finding supports the hypothesis that, during steady-state turnover, the primary role of these redox centers is to rapidly provide all the electrons needed to reduce oxygen by four electrons, thus preventing the release of toxic partially reduced oxygen species.
Department of Chemistry, Stanford University, Stanford, CA 94305–5080, USA.
* To whom correspondence should be addressed. E-mail: [email protected] (J.P.C.); [email protected] (C.E.D.C.)