計(jì)算機(jī)工程師可能給醫(yī)學(xué)界提供一種精確計(jì)算出蛋白質(zhì)如何形成和發(fā)揮功能的新方法。
美國中佛羅里達(dá)大學(xué)助理教授Shaojie Zhang使用一種復(fù)雜的計(jì)算機(jī)程序分析RNA基序,,即組成RNA的亞單元,。
RNA與DNA和蛋白質(zhì)是生命的三種構(gòu)建單元。知道這三種構(gòu)建單元如何合作和如何發(fā)生偏差將有助于理解是什么導(dǎo)致疾病以及如何治療它們,。
多虧人類基因組計(jì)劃,,人們已經(jīng)發(fā)現(xiàn)很多關(guān)于DNA的信息,但是關(guān)于RNA方面的信息人們知道不太多,。RNA像DNA一樣輔助編碼基因,。一些病毒也使用RNA作為它們進(jìn)行復(fù)制的主要遺傳來源。各種各樣的RNA參與所有過程,,包括蛋白合成,,控制基因表達(dá)和將身體某一部分的細(xì)胞信號(hào)傳送到另一部分。
組成RNA的基序像長的手風(fēng)琴那樣進(jìn)行折疊,,而且結(jié)構(gòu)可變,。在過去,人們已鑒定出很多基序,,但是直到現(xiàn)在找出一種快速自動(dòng)化的方法確定不同類型基序的結(jié)構(gòu)模式一直難以實(shí)現(xiàn),。
Zhang說,,“我們利用我們開發(fā)的新計(jì)算方法發(fā)現(xiàn)了很多新的RNA結(jié)構(gòu)基序。這一突破能夠極大地增加我們對(duì)RNA結(jié)構(gòu)基序的知識(shí),。而且新發(fā)現(xiàn)的基序可能有助于我們能夠開發(fā)出治療某些疾病的方法,。”
Zhang的研究結(jié)果發(fā)表在Nucleic Acids Research期刊上。
利用計(jì)算機(jī),,Zhang和他的研究小組已能夠觀察這些RNA的類似手風(fēng)琴那樣的結(jié)構(gòu)和它們?nèi)绾卧谌S尺度上進(jìn)行折疊,。這種計(jì)算機(jī)程序能夠很快地掃描很多RNA樣品和發(fā)現(xiàn)獨(dú)特的形成結(jié)構(gòu)模式的基序。這種信息能夠給研究人員提供關(guān)于它們功能方面的有用信息,。
Zhang說,,“這有助于解釋生物如何工作和為什么它有時(shí)發(fā)生錯(cuò)誤,從而導(dǎo)致一些致命性的疾病產(chǎn)生,。” (生物谷:towersimper編譯)
doi:10.1093/nar/gkr804
PMC:
PMID:
Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment
Cuncong Zhong and Shaojie Zhang
RNA structural motifs are the building blocks of the complex RNA architecture. Identification of non-coding RNA structural motifs is a critical step towards understanding of their structures and functionalities. In this article, we present a clustering approach for de novo RNA structural motif identification. We applied our approach on a data set containing 5S, 16S and 23S rRNAs and rediscovered many known motifs including GNRA tetraloop, kink-turn, C-loop, sarcin–ricin, reverse kink-turn, hook-turn, E-loop and tandem-sheared motifs, with higher accuracy than the state-of-the-art clustering method. We also identified a number of potential novel instances of GNRA tetraloop, kink-turn, sarcin–ricin and tandem-sheared motifs. More importantly, several novel structural motif families have been revealed by our clustering analysis. We identified a highly asymmetric bulge loop motif that resembles the rope sling. We also found an internal loop motif that can significantly increase the twist of the helix. Finally, we discovered a subfamily of hexaloop motif, which has significantly different geometry comparing to the currently known hexaloop motif. Our discoveries presented in this article have largely increased current knowledge of RNA structural motifs.