據(jù)11月27日的《科學(xué)》雜志報道說,,一種有關(guān)在某種最小的細(xì)菌之一(Mycoplasma pneumoniae,,肺炎支原體)中的所有蛋白質(zhì)的新圖譜可能會幫助科學(xué)家們確認(rèn)生命所需的細(xì)胞器的最低要求。 有關(guān)的發(fā)現(xiàn)表明,,這種細(xì)菌的生物學(xué)的復(fù)雜性令人驚訝,,而且它與真核細(xì)胞在某些方面具有相似性。
一個歐洲的研究團(tuán)隊(duì)在3篇相關(guān)的文章中介紹了他們的研究工作,。他們描述了在M. pneumoniae生物學(xué)中的三個成分:該細(xì)菌中的完整的蛋白質(zhì)組,,或稱“蛋白質(zhì)組”;其代謝網(wǎng)絡(luò),,以及其完整的信使RNA分子組(轉(zhuǎn)錄自基因)也稱作其“轉(zhuǎn)錄物組”,。
在第一則研究中,Sebastian Kühner及其同僚預(yù)期未來可能在更為復(fù)雜的生物體中所發(fā)生的情況,,他們將對蛋白質(zhì)相互作用的分析與有關(guān)這些蛋白質(zhì)結(jié)構(gòu)的資訊相結(jié)合,,從而揭露了這些蛋白質(zhì)是如何作為分子機(jī)器而一同工作的。 他們還對細(xì)胞中的這些蛋白質(zhì)的組織結(jié)構(gòu)進(jìn)行了繪測,。 由于M. pneumoniae的基因組的大小便于操作,,使得Eva Yus及其同僚能夠?qū)⒃撋矬w的代謝網(wǎng)絡(luò)進(jìn)行圖譜繪測,并在第二則研究中用實(shí)驗(yàn)對其進(jìn)行了驗(yàn)證,。 研究人員還研發(fā)了一種可對這種細(xì)菌進(jìn)行培養(yǎng)的最低要求的培養(yǎng)基,。 在第三則研究中,Marc Güell及其同僚應(yīng)用最新的測序技術(shù)披露了這種“簡單的”生物體具有某種與真核細(xì)胞相像的相對復(fù)雜的基因調(diào)控系統(tǒng),。 在一篇Perspective的文章中,,Howard Ochman 和 Rahul Raghavan對所有這三項(xiàng)研究進(jìn)行了討論。(生物谷Bioon.com)
生物谷推薦原始出處:
Science 27 November 2009:DOI: 10.1126/science.1176343
Proteome Organization in a Genome-Reduced Bacterium
Sebastian Kühner,1,* Vera van Noort,1,* Matthew J. Betts,1 Alejandra Leo-Macias,1 Claire Batisse,1 Michaela Rode,1 Takuji Yamada,1 Tobias Maier,2 Samuel Bader,1 Pedro Beltran-Alvarez,1 Daniel Casta?o-Diez,1 Wei-Hua Chen,1 Damien Devos,1 Marc Güell,2 Tomas Norambuena,3 Ines Racke,1 Vladimir Rybin,1 Alexander Schmidt,4 Eva Yus,2 Ruedi Aebersold,4 Richard Herrmann,5 Bettina B?ttcher,1, Achilleas S. Frangakis,1 Robert B. Russell,1 Luis Serrano,2,6 Peer Bork,1,Anne-Claude Gavin1,
The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification–mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.
1 European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
2 Centro Regulacion Genomica–Universidad Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.
3 Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
4 ETH (Eidgen?ssische Technische Hochschule) Zürich, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, and Institute for Systems Biology, Seattle, WA 98013, USA.
5 ZMBH (Zentrum für Molekulare Biologie der Universit?t Heidelberg), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
6 ICREA (Institució Catalana de Recerca i Estudis Avan?ats), 08010 Barcelona, Spain.