近日,,伊利諾大學(xué)的科學(xué)家設(shè)計(jì)了一種合成蛋白,其是原生蛋白-一氧化氮還原酶的結(jié)構(gòu)和功能模型,。
這種設(shè)計(jì)的蛋白,,為一氧化氮還原酶研究和生物催化劑生產(chǎn)提供了一個(gè)很好的模型系統(tǒng),能夠用于生物技術(shù),,環(huán)境和制藥等不同領(lǐng)域,。這項(xiàng)研究的負(fù)責(zé)人伊利諾大學(xué)的化學(xué)教授Yi Lu介紹說(shuō)。
通過(guò)合理設(shè)計(jì)的模型,,研究人員能夠理解原生蛋白,,并有可能生成更有效,結(jié)構(gòu)更穩(wěn)固或功能更多的蛋白,。
然而,,生成結(jié)構(gòu)和功能相似的蛋白需要經(jīng)過(guò)相當(dāng)復(fù)雜的過(guò)程。Lu的研究團(tuán)隊(duì),,首次設(shè)計(jì)了一種合成蛋白,,其能夠模仿一種金屬蛋白的結(jié)構(gòu)和功能。這項(xiàng)研究結(jié)果發(fā)布在11月25日Nature的在線版本上,。
一氧化氮還原酶是氮循環(huán)中的一種關(guān)鍵酶,。一氧化氮在細(xì)胞信號(hào)傳導(dǎo)和宿主病原體應(yīng)答過(guò)程中具有重要作用。因此,,一氧化氮還原酶的研究是理解這些生理和病理過(guò)程的前提,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature 462, 113-116 (5 November 2009) | doi:10.1038/nature08551
Rationally tuning the reduction potential of a single cupredoxin beyond the natural range
Nicholas M. Marshall1, Dewain K. Garner1, Tiffany D. Wilson1, Yi-Gui Gao1, Howard Robinson2, Mark J. Nilges1 & Yi Lu1
1 Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA
2 Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
Correspondence to: Yi Lu1 Correspondence and requests for materials should be addressed to Y.L.
Redox processes are at the heart of numerous functions in chemistry and biology, from long-range electron transfer in photosynthesis and respiration to catalysis in industrial and fuel cell research. These functions are accomplished in nature by only a limited number of redox-active agents. A long-standing issue in these fields is how redox potentials are fine-tuned over a broad range with little change to the redox-active site or electron-transfer properties. Resolving this issue will not only advance our fundamental understanding of the roles of long-range, non-covalent interactions in redox processes, but also allow for design of redox-active proteins having tailor-made redox potentials for applications such as artificial photosynthetic centres1, 2 or fuel cell catalysts3 for energy conversion. Here we show that two important secondary coordination sphere interactions, hydrophobicity and hydrogen-bonding, are capable of tuning the reduction potential of the cupredoxin azurin over a 700 mV range, surpassing the highest and lowest reduction potentials reported for any mononuclear cupredoxin, without perturbing the metal binding site beyond what is typical for the cupredoxin family of proteins. We also demonstrate that the effects of individual structural features are additive and that redox potential tuning of azurin is now predictable across the full range of cupredoxin potentials.