生物谷報道:美國科學家在8日出版的最新一期《自然》雜志上公布了一只12歲大斗拳狗的完全基因組圖譜,該圖譜將有助于理解一些特定基因的演化,,并將促進對人類和犬類共患疾病的研究,。文章發(fā)表在該期Nature封面上,。
所有犬類的祖先都是灰狼,人類在過去1.5萬年里,根據自己的意志和犬的特點對犬進行了一系列的選育,,培育出400多個犬種,。其中各犬種都具備不同特征和不同的遺傳代碼,因此確定決定犬類特征的基因要比確定決定人類特征的基因簡單得多,。
2003年,,科學家曾繪制了一只獅子狗75%的基因組圖譜。參與此次最新研究的美國國家人類基因組研究所的科學家認為,,結合這只斗拳狗的完全基因組圖譜與這只獅子狗的基因組草圖,,將有助于研究一些人犬共患遺傳型疾病的原因,如人類和犬類都會患的癌癥等,。
研究人員說,,他們在這只斗拳狗的基因組圖譜中發(fā)現了一些不進行任何基因編碼的DNA(脫氧核糖核酸)序列,而人類和老鼠的基因組中也存在相同的序列,。他們認為,,三種動物基因組中存在相同“不編碼”序列的事實說明,這些序列很可能控制著基因的活動,,而追究這些序列的功能則是基因學家亟待解決的問題,。
1.93萬個狗基因中,至少有18473個與已識別的人類基因相同,; 人,、狗基因組之間相似性比人和鼠以及鼠和狗基因組之間的相似性都大; 狗有360多種遺傳疾病與人類相同,,狗基因組圖譜的繪制意義重大,。
人、狗基因數量大致相同
被選為DNA(脫氧核糖核酸)測序對象的是一只名為“塔莎”的雌性拳師狗,。這種德國產的中型守衛(wèi)犬是從100多種不同的狗中挑選出來的,,被認為是基因變異最少的犬類動物,也最可能提供可靠的基因參照信息,。拳師狗的祖先是藏獒犬種,,中世紀時,人類用其攻擊野牛,、野豬與鹿,,19世紀時,和一些其它品種交配改良成了現在的拳師狗,。它的基因組圖譜已經被納入公開基因資料庫,,供全球生物醫(yī)學科研人員免費使用。
繪成的基因組圖譜顯示,,犬類擁有約24億對DNA堿基對,,組成了約1.93萬個基因,。此前的研究曾認為,人類比狗的基因多3000個左右,,但通過與狗基因圖譜的對比分析,,科學家對那些多出來的人類基因的真實性產生了質疑,認為一些曾經被識別的人類基因可能并不存在,。
這次由政府資助,、美國國家人類基因組研究所領導的“狗基因組計劃”是于2003年6月正式啟動的。研究小組用了一年左右時間,,在去年7月完成了狗基因的DNA測序工作,,并在今年12月8日正式公布了最終繪制完成的基因組圖譜。
人與狗“同病相憐”
研究人員稱從進化角度看,,人,、鼠和狗曾擁有共同祖先,但狗大約在9500萬年以前分離成一個獨立物種,。人類和老鼠同時在大約8700萬年前各自獨立出來,,因此老鼠就進化關系而言與人類更近,。但圖譜對比分析表明,,人類和狗基因組之間的相似性比鼠和人類、鼠和狗基因組之間的相似性都要大,。
人類擁有約30億對DNA堿基對,,僅比狗多6億對,其中約有6.5億個堿基對與狗部分相同,。在1.93萬個狗基因中,,至少有18473個與已識別的人類基因相同,而人與鼠類只有18331個基因相同,。
參與此次研究的美國國家人類基因組研究所的科學家指出,,由于長期選擇性繁殖的關系,許多狗種也很容易患有與人類同樣的基因疾病,,如癌癥,、心臟病、聾啞,、失明和免疫性神經系統(tǒng)疾病等,。據估計,狗身上有360多種遺傳疾病與人類相同,。因此,,繪制狗基因組圖譜,并將其與人類基因組圖譜進行比較分析,,對尋找人和狗的致病基因都將起到有力的促進作用,。
美國麻省理工和哈佛大學與布羅德基金合辦的布羅德學院科學家日前宣布成功破解狗的基因,,這將有助找出導致狗和人類失明和耳聾,以及患上癌癥,、心臟病,、白內障和癲癇癥的基因。
研究人員發(fā)現狗有一萬九千三百個單位的基因,,差不多所有也能在人類之中找到,。
隨著狗基因獲得破解,專家已開始詳細比較不同狗種以及狗與人類的基因排列,。由于科學家已發(fā)現,,在狗只中找出致病基因比在人類中找尋容易得多,因此一些人狗共有的疾病,,便可借此更易找出對治方法,。
a, Modern haplotype structure arose from key events in dog breeding history. The domestic dog diverged from wolves 15,000–100,000 years ago97,119, probably through multiple domestication events98. Recent dog breeds have been created within the past few hundred years. Both bottlenecks have influenced the haplotype pattern and LD of current breeds. (1) Before the creation of modern breeds, the dog population had the short-range LD expected on the basis of its large size and time since the domestication bottleneck. (2) In the creation of modern breeds, a small subset of chromosomes was selected from the pool of domestic dogs. The long-range patterns that happened to be carried on these chromosomes became common within the breed, thereby creating long-range LD. (3) In the short time since breed creation, these long-range patterns have not yet been substantially broken down by recombination. Long-range haplotypes, however, still retain the underlying short-range ancestral haplotype blocks from the domestic dog population, and these are revealed when one examines chromosomes across many breeds. b, c, Distribution of ancestral haplotype blocks in a 10-kb window on chromosome 6 at 31.4 Mb across 24 breeds (b) and within four breeds (c). Ancestral haplotype blocks are 5–15 kb in size (which is shorter than the 25-kb blocks seen in humans) and are shared across breeds. Typical blocks show a spectrum of 5 haplotypes, with one common major haplotype. Blocks were defined using the modified four-gamete rule (see Supplementary Information) and each haplotype (minor allele frequency (maf) > 3%) within a block was given a unique colour. d, e, Distribution of breed-derived haplotypes across a 10-kb window on chromosome 6 at 31.4 Mb across 24 breeds (d) and within four breeds (e). Each colour denotes a distinct haplotype (maf > 3%) across 11 SNPs in the 10-kb window for each of the analysed dogs. Pairs of haplotypes have an average of 3.7 differences. Most haplotypes can be definitively identified on the basis of homozygosity within individual dogs. Grey denotes haplotypes that cannot be unambiguously phased owing to rare alleles or missing data. Within each of the four breeds shown, there are 2–5 haplotypes, with one or two major haplotypes accounting for the majority of the chromosomes. Across the 24 breeds, there are a total of seven haplotypes. All but three are seen in multiple breeds, although at varying frequencies.
The phylogenetic tree is based on 15 kb of exon and intron sequence (see text). Branch colours identify the red-fox-like clade (red), the South American clade (green), the wolf-like clade (blue) and the grey and island fox clade (orange). The tree shown was constructed using maximum parsimony as the optimality criterion and is the single most parsimonious tree. Bootstrap values and bayesian posterior probability values are listed above and below the internodes, respectively; dashes indicate bootstrap values below 50% or bayesian posterior probability values below 95%. Horizontal bars indicate indels, with the number of indels shown in parentheses if greater than one. Underlined species names are represented with corresponding illustrations. (Copyright permissions for illustrations are listed in the Supplementary Information.) Divergence time, in millions of years (Myr), is indicated for three nodes as discussed in ref. 1. For scientific names and species descriptions of canids, see ref. 119. A tree based on bayesian inference differs from the tree shown in two respects: it groups the raccoon dog and bat-eared fox as sister taxa, and groups the grey fox and island fox as basal to the clade containing these sister taxa. However, neither of these topological differences is strongly supported (see text and Supplementary Information).
原始出處:
Genome sequence, comparative analysis and haplotype structure of the domestic dog
Kerstin Lindblad-Toh, Claire M Wade, Tarjei S. Mikkelsen, Elinor K. Karlsson, David B. Jaffe, Michael Kamal, Michele Clamp, Jean L. Chang, Edward J. Kulbokas, III, Michael C. Zody, Evan Mauceli, Xiaohui Xie, Matthew Breen, Robert K. Wayne, Elaine A. Ostrander, Chris P. Ponting, Francis Galibert, Douglas R. Smith, Pieter J. deJong, Ewen Kirkness, Pablo Alvarez, Tara Biagi, William Brockman, Jonathan Butler, Chee-Wye Chin, April Cook, James Cuff, Mark J. Daly, David DeCaprio, Sante Gnerre, Manfred Grabherr, Manolis Kellis, Michael Kleber, Carolyne Bardeleben, Leo Goodstadt, Andreas Heger, Christophe Hitte, Lisa Kim, Klaus-Peter Koepfli, Heidi G. Parker, John P. Pollinger, Stephen M. J. Searle, Nathan B. Sutter, Rachael Thomas, Caleb WebberBroad Sequencing Platform members and Eric S. Lander. Nature 438, 803-819 (8 December 2005)
相關文章:
人類基因組發(fā)展過程
·Nature:人類基因組遺傳整合圖譜HapMap被初步揭開
·美科學家繪制出不同人種基因組差異圖
·Nature:人類18號染色體精確測序及分析完成
·美科學家破譯人類第16號染色體
·董偉博士談人類第2號、第4號染色體的破譯
·Nature:美科學家破譯人類第2,、4號染色體
·Nature:美印研究人員完成了X染色體的分析
·Nature:科學家公布人類X染色體基因序列草圖
·X染色體基因草圖揭開了破譯人類“天書”的新篇章
·生物谷專題,;人類基因組研究
植物基因組測序
·美宣布將破譯玉米基因圖譜
·玉米基因組測序完畢
·美國召集120名科學家嘗試破解玉米基因組
·Nature:中國科學家參與完成“水稻基因組序列全圖”
·中國首次完成海藻基因組大規(guī)模測序
·Nature:美科學家完成稻瘟病菌基因組測序
·中國專家已畫出水稻全基因組“精細圖”
·破解白楊DNA密碼
·巴西完成咖啡豆基因組圖譜
·美國科學家將繪制18種生物基因組圖譜
動物基因測序相關事件
·豬基因組測序結果公布
·美國將開展奶牛基因組測序研究
·袋鼠將進行基因組測序
·狗的基因組測序完畢
·美國和歐洲科學家成功繪制大鼠基因組草圖
·多國科學家繪出雞的基因組序列草圖和遺傳差異圖
·科學家繪出雞的基因組序列草圖和遺傳差異圖
· 小鼠基因組測序及其與人類基因組的比較
·“活化石”腔棘魚的基因組測序完成
·美國農業(yè)部宣布:科學家首次繪出?;虿輬D
·蜂蜜基因組序列草圖完成 基因數據首次開放
·狗基因組揭開面紗
·果蠅基因組物理圖譜構建成功
微生物基因組測序
·Nature:變形蟲“阿米巴”基因組完成測序
·NATURE:科學家破譯阿米巴基因組序列
·中耳炎致病菌一種變種基因組測序完成
·基因組學揭示細菌耐熱秘密
·Science:美科學家繪制出感染性真菌的基因組圖譜
·Nature:多國科學家破譯黏菌基因組
·美啟動流感基因測序
·臺灣完成紅麴菌真核生物測序
·科學家繪制完成痤瘡桿菌基因組圖譜
·《Nature》:黃孢原毛平革菌基因組測學完成
·美繪出一種會腐蝕油氣管道細菌的基因組圖譜
·科學家對致命腸道寄生蟲基因組進行測序
·兔熱病菌的基因組序列被破譯
·殺蟲細菌的基因組測序完成
·美科研小組繪出豬布魯氏桿菌基因組圖譜
·Genome Research:我國科學家植物病原菌基因組學研究取得重
·全基因組測序分析鎖定痢疾
·四氯乙烯等污染物降解菌基因組測序完成