一只名為“肉桂”(Cinnamon)的4歲雌性阿比西尼亞貓有幸成為第一只完成基因組測序草圖的貓。它也因此加入了包括狗,、小鼠,、大鼠以及黑猩猩等在內(nèi)的基因組“俱樂部”,。相關(guān)論文11月1日在線發(fā)表于《基因組研究》(Genome Research)雜志上,。
該測序工作得到的還是一個粗略的草圖——僅包含“肉桂”60%的全基因序列(A,C,,T,,G),其間還有很多空缺,。盡管所得的結(jié)果并不完美,,但領(lǐng)導(dǎo)研究的美國國立癌癥研究所(NCI)的遺傳學(xué)家Stephen O’Brien表示,錯誤的幾率不會超過1%,。
值得一提的是,,該研究僅花費了1000萬美元,而所獲得的數(shù)據(jù)對一些類型的研究而言,,已經(jīng)足夠好了,。O’Brien表示,該項研究的策略應(yīng)該成為在缺乏足夠支持的情況下,,進行基因組測序的典范,。
毫無疑問,新的測序工作將促進與貓類特征和疫病相關(guān)的基因研究,。比如,,今年早些時候,,根據(jù)當(dāng)時的測序結(jié)果,O’Brien小組發(fā)現(xiàn)了一個與“肉桂”幼年失明相關(guān)的基因突變,,它在阿比西尼亞貓中十分普遍,,會造成一種名為色素性視網(wǎng)膜炎(retinitis pigmentosa)的疾病。
通過將很長的DNA序列分割成較小的片斷并用機器進行解碼,,研究人員得到了貓的基因組圖,。不過,這種方法很容易遺失掉一些部分,。為了保證研究覆蓋到整個基因組,,科學(xué)家往往會對全基因組片斷進行多次測序,由于每次測序的分割位置可能不同,,因此這種方法最大程度上保證了遺傳信息的完整,。
具體到對“肉桂”的研究,科學(xué)家共測定了大約50億個堿基對,,這一數(shù)字是它具有27億個堿基對的基因組的1.9倍,。與此相比,人類基因組測序了7倍,,狗的基因組測序達到了7.5倍,。
在此之后,研究人員還要將測定的序列按原先的順序排列起來,,一般情況下,,只要通過不同片斷序列交疊的部分就能夠進行重新組合,但對于此次研究來說,,貓的基因序列交疊部分太少了,,因此難度很大。作為一種“捷徑”,,O’Brien和NCI的生物信息學(xué)家Joan Pontius依照狗和人類基因組的相似部分,,將貓較短的DNA片斷排列了起來。這種方法大大節(jié)省了他們的時間和勞動,。
該研究小組一共鑒別出20285個基因,,并得到3.27萬個單堿基差異的圖譜。這些信息目前可以開放獲?。?a >http://lgd.abcc.ncifcrf.gov/
由于貓是科學(xué)家研究人類失明和艾滋病的模型之一,,因此,新的測序結(jié)果可能大有用處,。不過,,一些科學(xué)家認為,隨著基因測序成本的不斷降低,,獲得物種的基因草圖并沒有多少亮點,。美國馬里蘭大學(xué)的計算生物學(xué)家Steven Salzberg表示,,“這就好比讀一本書,但你只能讀到每句話的一半,。”
不過,,明年早些時候Salzberg的愿望可能就會實現(xiàn),因為到那時,,一份完整的“肉桂”基因組將會出爐,,它可能要比狗的基因測序結(jié)果更加完美。
密蘇里州的一只阿比西尼亞的貓西納蒙(Cinnamon)剛剛書寫了科學(xué)史:研究人員已基本解碼了它的DNA,,這一步可能有助于研究貓科動物和人類疾病的治療,。在此之前,科學(xué)家已經(jīng)解碼了差不多二十多種哺乳動物的DNA,,其中包括狗,、黑猩猩、小老鼠,、田鼠,、母牛,當(dāng)然還有人,。
研究人員為什么要解碼貓的DNA呢,?他們表示,貓會患與人類疾病相似的200多種疾病,,了解它們的基因結(jié)構(gòu)的詳細情況應(yīng)該有助于研制疫苗,,進行相關(guān)治療。美國國家癌癥研究所的斯蒂芬·奧布里恩表示,,這份疾病名單貓版的艾滋病,、非典型肺炎,、糖尿病,、視網(wǎng)膜疾病和脊柱裂等。
休斯敦貝勒醫(yī)學(xué)院(Baylor College of Medicine)領(lǐng)導(dǎo)解碼獼猴DNA小組的理查德·吉布斯將這項新工作稱為貓DNA的“很好的構(gòu)圖”,??茖W(xué)家們正期待完成貓的全部的基因圖譜,它將被拿來與其他動物的DNA作詳細對比,。一種生物DNA的全部基因被稱作它的基因組,。在貓身上,就像在人身上一樣,,它由將近30億基因塊組成,。
這些基因塊的序列清楚地說明了遺傳信息,正如字母串組成句子一樣,。解碼一個基因組叫做測序,,意味著確定了這些基因塊的順序,。奧布里恩表示,這項新工作確定了貓的20285個基因,,可能是貓全部基因的95%左右,。這與人類的20000到25000個基因相似。
原始出處:
Genome Res. 17:1675-1689, 2007
Initial sequence and comparative analysis of the cat genome
Joan U. Pontius1,17, James C. Mullikin2, Douglas R. Smith3, Agencourt Sequencing Team3,16, Kerstin Lindblad-Toh4, Sante Gnerre4, Michele Clamp4, Jean Chang4, Robert Stephens5, Beena Neelam5, Natalia Volfovsky5, Alejandro A. Schäffer6, Richa Agarwala6, Kristina Narfström7, William J. Murphy8, Urs Giger9, Alfred L. Roca1, Agostinho Antunes10,11,12, Marilyn Menotti-Raymond10, Naoya Yuhki10, Jill Pecon-Slattery10, Warren E. Johnson10, Guillaume Bourque13, Glenn Tesler14, NISC Comparative Sequencing Program15, and Stephen J. O’Brien10,17
1 Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA; 2 Comparative Genomics Unit, National Human Genome Research Institute, Rockville, Maryland 20892, USA; 3 Agencourt Bioscience Corporation, Beverly, Massachusetts 01915, USA; 4 Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, USA; 5 Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA; 6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA; 7 Department of Ophthalmology (Mason Eye Institute), Department of Veterinary Medicine & Surgery, University of Missouri–Columbia, Columbia, Missouri 65211, USA; 8 Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA; 9 Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; 10 Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702, USA; 11 REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; 12 CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; 13 Genome Institute of Singapore, Singapore 138672, Republic of Singapore; 14 Department of Mathematics, University of California, San Diego, California 92093-0112, USA; 15 NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.