美國喬治亞理工學(xué)院科學(xué)家使用一種稱為RNA測序的新技術(shù),,描繪出了炭疽芽孢桿菌的基因表達(dá),。公布在最新一期《細(xì)菌學(xué)》雜志網(wǎng)絡(luò)版上的此項(xiàng)研究成果,標(biāo)志著任何細(xì)菌轉(zhuǎn)錄(細(xì)菌表達(dá)不同基因時(shí)產(chǎn)生的完整信使RNA集合)自此可被全面定義,并為研究細(xì)菌如何調(diào)控基因表達(dá)提供了更多細(xì)節(jié)。
喬治亞理工學(xué)院光電系統(tǒng)實(shí)驗(yàn)室的研究人員表示,,細(xì)菌的基因組測序已是相當(dāng)普通的事情,但要更深層次地定義其轉(zhuǎn)錄是一件非常艱巨的任務(wù),。使用傳統(tǒng)方法,,轉(zhuǎn)錄的結(jié)構(gòu)和豐度實(shí)際上只能一次一個(gè)基因地加以確定,即使是最為廣泛研究的物種,,要對(duì)其進(jìn)行完整意義上的轉(zhuǎn)錄也是遙不可及之事,。RNA測序方法使科學(xué)家們得以克服傳統(tǒng)方法的局限,以非常詳細(xì)的方式觀察B型炭疽基因組的5000多個(gè)基因中的每一個(gè)基因的表達(dá)和調(diào)控,。
RNA測序方法通過使用一種稱為高通測序的技術(shù)來實(shí)施,,可同時(shí)對(duì)數(shù)百萬個(gè)信使RNA進(jìn)行測序。雖然這種方法在2008年曾被用來定義一些真核有機(jī)體的轉(zhuǎn)錄,,但其難以適用于細(xì)菌,,因?yàn)榧?xì)菌信使RNA具有不同的結(jié)構(gòu),且不易和細(xì)胞中的其他RNA相分離,。
為了解決這個(gè)問題,,喬治亞理工學(xué)院和生命技術(shù)公司的研究人員開發(fā)了一套可讓RNA測序適用于任何細(xì)菌的程序。
在使用這種技術(shù)研究B型炭疽的過程中,,研究人員對(duì)收集自不同條件下生長的B型炭疽細(xì)胞進(jìn)行了測序。他們采集了超過2億7千萬個(gè)序列“標(biāo)記”,,其中每一個(gè)序列相當(dāng)于一個(gè)RNA分子的短片段,,然后,他們使用自己開發(fā)的定制軟件工具將其拼接在一起,。
研究人員表示,,這些數(shù)據(jù)一旦合在一起,,就很容易看到基因組的轉(zhuǎn)錄結(jié)構(gòu),也就是看到基因組的轉(zhuǎn)錄和非轉(zhuǎn)錄區(qū)域間的清晰邊界,,這代表了個(gè)別轉(zhuǎn)錄開始和終止的地方,。這些轉(zhuǎn)錄邊界準(zhǔn)確地告知研究人員在哪里可找到管理基因表達(dá)的調(diào)控序列,而這些序列是其他方法非常難以找到的,。
研究人員還發(fā)現(xiàn),,RNA測序本質(zhì)上只是一種高通量的計(jì)數(shù)技術(shù),它提供了一種方法來決定細(xì)胞中的轉(zhuǎn)錄有多豐富,。該方法在測量基因表達(dá)時(shí)要比傳統(tǒng)的微陣列方法具有高得多的靈敏度,。將一個(gè)細(xì)菌基因組中每個(gè)基因的結(jié)構(gòu)和豐度信息相結(jié)合,研究人員就可以采取更為合理的方法來完成抗生素發(fā)現(xiàn)和微生物工程設(shè)計(jì)這樣的工作,。(生物谷Bioon.com)
生物谷推薦原始出處:
J. Bacteriol. doi:10.1128/JB.00122-09
The Structure and Complexity of a Bacterial Transcriptome
Karla D. Passalacqua, Anjana Varadarajan, Brian D. Ondov, David T. Okou, Michael E. Zwick, and Nicholas H. Bergman*
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA 30332, USA
Although gene expression has been studied in bacteria for decades, many aspects of the bacterial transcriptome remain poorly understood. Transcript structure, operon linkages, and absolute abundance information all provide valuable insights into gene function and regulation, but none has ever been determined on a genome-wide scale for any bacterium. Indeed, these aspects of the prokaryotic transcriptome have only been explored on a large scale in a few instances, and consequently little is known about the absolute composition of the mRNA population within a bacterial cell. Here we report the use of a high-throughput sequencing-based approach (RNA-Seq) in assembling the first comprehensive, single-nucleotide resolution view of a bacterial transcriptome. We sampled the Bacillus anthracis transcriptome under a variety of growth conditions, and showed that these data provide an accurate and high-resolution map of transcript start sites and operon structure throughout the genome. Further, the sequence data identified previously unannotated regions with significant transcriptional activity, and enhanced the accuracy of existing genome annotations. Finally, our data provide estimates of absolute transcript abundance, and suggest there is significant transcriptional heterogeneity within a clonal, synchronized bacterial population. Overall, our results offer an unprecedented view of gene expression and regulation in a bacterial cell.