據(jù)8月28日的《科學》雜志報道說,蠶蟲馴養(yǎng)已經(jīng)有1萬多年歷史了。蠶為人類提供了寶貴的絲綢和蛋白。但是,現(xiàn)在對蠶基因進行序列測試還為人們提供了一張有關這些隨時會為我們提供如此多寶貴物質(zhì)的昆蟲的基因變異圖,。
由西南大學、深圳華大基因帶領的國際研究團隊為29種家蠶和11種野蠶世系的基因組成功地進行了測序并找到了這些世系之間的差別,。共獲得了40個家蠶突變品系和中國野桑蠶的全基因組序列,,共測632.5億對堿基序列,覆蓋了99.8%的基因組區(qū)域,,是多細胞真核生物大規(guī)模重測序研究的首次報道,;繪制完成了世界上第一張基因組水平上的蠶類單堿基遺傳變異圖譜,這是世界上首次報道的昆蟲基因組變異圖,??茖W家還發(fā)現(xiàn)了馴化對家蠶生物學影響的基因組印記,從全基因組水平上揭示了家蠶的起源進化,。
研究發(fā)現(xiàn),,家蠶很明顯地在基因上與其野生對應物不同,,但即使在各家蠶世系之間,它們?nèi)匀痪S持著大量的變異性,。這提示,,家蠶只經(jīng)歷了一次牽涉有大量個體的單一且短暫的馴養(yǎng)過程,并在此后在家蠶與野蠶種群之間很少有基因流動,。研究人員還能夠識別出特別的能夠增進絲的生產(chǎn),、蠶蟲的繁殖和生長的基因(這些基因很可能是被人類挑選出的)。他們甚至還尋找到了在馴養(yǎng)過程中由蠶蟲所獲取的行為特征,,例如極端的擁擠和容忍人的靠近和操作,,以及它們在馴養(yǎng)過程中所喪失的如逃逸及躲避掠食者和疾病等的特征。(生物谷Bioon.com)
生物谷推薦原始出處:
Science Published Online August 27, 2009 DOI: 10.1126/science.1176620
Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm (Bombyx)
Qingyou Xia 1, Yiran Guo 2, Ze Zhang 1, Dong Li 3, Zhaoling Xuan 2, Zhuo Li 2, Fangyin Dai 4, Yingrui Li 2, Daojun Cheng 4, Ruiqiang Li 5, Tingcai Cheng 1, Tao Jiang 2, Celine Becquet 6, Xun Xu 2, Chun Liu 4, Xingfu Zha 4, Wei Fan 2, Ying Lin 4, Yihong Shen 4, Lan Jiang 2, Jeffrey Jensen 7, Ines Hellmann 7, Si Tang 7, Ping Zhao 4, Hanfu Xu 4, Chang Yu 2, Guojie Zhang 2, Jun Li 2, Jianjun Cao 2, Shiping Liu 4, Ningjia He 4, Yan Zhou 2, Hui Liu 2, Jing Zhao 2, Chen Ye 2, Zhouhe Du 4, Guoqing Pan 4, Aichun Zhao 4, Haojing Shao 2, Wei Zeng 2, Ping Wu 2, Chunfeng Li 4, Minhui Pan 4, Jingjing Li 2, Xuyang Yin 2, Dawei Li 2, Juan Wang 2, Huisong Zheng 2, Wen Wang 2, Xiuqing Zhang 2, Songgang Li 2, Huanming Yang 2, Cheng Lu 4, Rasmus Nielsen 8, Zeyang Zhou 9, Jian Wang 2, Zhonghuai Xiang 4*, Jun Wang 5*
1 The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.; Institute of Agronomy and Life Sciences, Chongqing University, Chongqing 400044, China.
2 Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China.
3 The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.; Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China.
4 The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.
5 Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China.; Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Kbh , Denmark.
6 Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA 94720, USA.; Present address: Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143–0794, USA.
7 Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA 94720, USA.
8 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Kbh , Denmark.; Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA 94720, USA.
9 The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.; Chongqing Normal University, Chongqing 400047, China.
A single-base-pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to ~3X coverage, representing 99.88% of the genome. We identified ~16 million SNPs, many indels and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing use of silkworms as efficient bioreactors.