11月1日,,《自然—遺傳學》(Nature Genetics)雜志在線發(fā)表了世界第一個蔬菜作物的基因組測序和分析的重要論文,。這是由我國科學家發(fā)起和主導的國際黃瓜基因組計劃第一階段所取得的重大成果,對黃瓜和其它瓜類作物的遺傳改良,、基礎生物學研究,、以及對植物維管束系統(tǒng)的功能和進化研究將發(fā)揮重要的推動作用。黃瓜基因組論文是《自然—遺傳學》至今為止發(fā)表的為數(shù)不多的植物學論文之一,。
國際黃瓜基因組計劃由中國農(nóng)業(yè)科學院蔬菜花卉研究所于2007年初發(fā)起并組織,,由深圳華大基因研究院承擔基因組測序和組裝等技術工作。參與單位包括中國農(nóng)大,、北京師大,、美國康乃爾大學、威斯康星大學和加州大學戴維斯分校,、荷蘭瓦赫寧根大學以及澳大利亞多態(tài)性芯片技術中心,。這是由我國發(fā)起的第一個多邊合作的大型植物基因組計劃。
黃瓜基因組共有約3.5億個堿基對,。項目采用了新一代測序技術,,自主開發(fā)了一套全新的序列拼接軟件,成功地以較低的成本繪制了黃瓜基因組的精細圖,。這一套測序策略已經(jīng)成為了其它植物基因組測序的模式,。
在黃瓜基因組中共發(fā)現(xiàn)了26,682個基因。項目創(chuàng)建了包含1800個分子標記的高密度遺傳圖譜,,把基因組的20000多個基因定位在染色體上,,這給重要經(jīng)濟性狀基因的克隆帶來了極大的便利。目前已經(jīng)發(fā)現(xiàn)了與黃瓜產(chǎn)量,、品質(zhì),、抗病性等重要農(nóng)藝性狀相關的候選基因300多個,已經(jīng)克隆了與產(chǎn)量相關的性別決定基因(和上海交大合作),、苦味基因和抗黑星病基因,,為這些重要性狀的分子育種提供了快捷準確的工具。
黃瓜有7條染色體,,而甜瓜有12條染色體,。本研究表明:黃瓜7條染色體中的5條是由甜瓜的12條染色體中的10條兩兩融合而成的,這一發(fā)現(xiàn)解決了葫蘆科染色體進化上一個多年未解的難題。在基因區(qū)域,,黃瓜和甜瓜有95%的相似性,,和西瓜也有超過90%的相似性。我國瓜類作物的栽培面積在4000萬畝以上,,黃瓜的基因組序列將推動所有瓜類作物的生物學研究和遺傳育種,。
植物的維管束系統(tǒng)相當于人體的血管,是植物營養(yǎng)運輸和長距離信號傳導的主要通道,。黃瓜是維管束研究的模式系統(tǒng),。黃瓜基因組研究首次揭示了800個與維管束功能相關的基因,并且發(fā)現(xiàn)它們所在的基因家族在低等植物向高等植物進化的過程中得到了擴增,。
在基因組測序完成的基礎上,,國際黃瓜基因組計劃進入下一個階段,將系統(tǒng)地研究黃瓜種質(zhì)資源的遺傳多樣性和黃瓜基因表達及調(diào)控的特性,,將克隆主要的經(jīng)濟性狀基因,,開發(fā)廉價快捷的分子育種工具,推動基因組的研究成果直接應用到優(yōu)良新品種的培育上,。(生物谷Bioon.com)
其他物種基因組研究:
Science:家蠶基因組測序成功
Nature:馬鈴薯晚疫病病菌基因組測序完成
PLoS ONE:繪制出首張黃瓜基因組圖譜
PLoS Biology:老鼠全基因組測序圖公布
Nature:高粱基因組完成測序
Nature Biotechnology:測出植物寄生型線蟲基因組序列
Nature:三角褐指藻基因組完成測序
更多基因組信息,。。,。
生物谷推薦原始出處:
Nature Genetics 1 November 2009 | doi:10.1038/ng.475
The genome of the cucumber, Cucumis sativus L.
Sanwen Huang1,19, Ruiqiang Li2,3,19, Zhonghua Zhang1,19, Li Li2,19, Xingfang Gu1,19, Wei Fan2,19, William J Lucas4,19, Xiaowu Wang1, Bingyan Xie1, Peixiang Ni2, Yuanyuan Ren2, Hongmei Zhu2, Jun Li2, Kui Lin5, Weiwei Jin6, Zhangjun Fei7, Guangcun Li8, Jack Staub9, Andrzej Kilian10, Edwin A G van der Vossen11, Yang Wu5, Jie Guo5, Jun He1, Zhiqi Jia1, Yi Ren1, Geng Tian2, Yao Lu2, Jue Ruan2,12, Wubin Qian2, Mingwei Wang2, Quanfei Huang2, Bo Li2, Zhaoling Xuan2, Jianjun Cao2, Asan2, Zhigang Wu2, Juanbin Zhang2, Qingle Cai2, Yinqi Bai2, Bowen Zhao13, Yonghua Han6, Ying Li1, Xuefeng Li1, Shenhao Wang1, Qiuxiang Shi1, Shiqiang Liu1, Won Kyong Cho14, Jae-Yean Kim14, Yong Xu15, Katarzyna Heller-Uszynska10, Han Miao1, Zhouchao Cheng1, Shengping Zhang1, Jian Wu1, Yuhong Yang1, Houxiang Kang1, Man Li1, Huiqing Liang2, Xiaoli Ren2, Zhongbin Shi2, Ming Wen2, Min Jian2, Hailong Yang2, Guojie Zhang2,12, Zhentao Yang2, Rui Chen2, Shifang Liu2, Jianwen Li2, Lijia Ma2,12, Hui Liu2, Yan Zhou2, Jing Zhao2, Xiaodong Fang2, Guoqing Li2, Lin Fang2, Yingrui Li2,12, Dongyuan Liu2, Hongkun Zheng2,3, Yong Zhang2, Nan Qin2, Zhuo Li2, Guohua Yang2, Shuang Yang2, Lars Bolund2,16, Karsten Kristiansen17, Hancheng Zheng2,18, Shaochuan Li2,18, Xiuqing Zhang2, Huanming Yang2, Jian Wang2, Rifei Sun1, Baoxi Zhang1, Shuzhi Jiang1, Jun Wang2,17, Yongchen Du1 & Songgang Li2
Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.
1 Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
BGI-Shenzhen, Shenzhen, China.
2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
3 Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA.
4 College of Life Sciences, Beijing Normal University, Beijing, China.
5 National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
6 Boyce Thompson Institute and USDA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA.
7 High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.
8 US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, Madison, Wisconsin, USA.
9 Diversity Arrays Technology, Canberra, Australia.
10 Wageningen UR Plant Breeding, Wageningen, The Netherlands.
11 The Graduate University of Chinese Academy of Sciences, Beijing, China.
12 High School Affiliated to Renmin University of China, Beijing, China.
13 Division of Applied Life Science (BK21 and WCU program), PMBBRC and EB-NCRC, Gyeongsang National University, Jinju, Republic of Korea.
14 National Engineering Research Center for Vegetables, Beijing, China.
15 Institute of Human Genetics, University of Aarhus, Aarhus, Denmark.
16 Department of Biology, University of Copenhagen, Copenhagen, Denmark.
17 South China University of Technology, Guangzhou, China.
18 These authors contributed equally to this work.