11月1日,,《自然—遺傳學(xué)》(Nature Genetics)雜志在線發(fā)表了世界第一個(gè)蔬菜作物的基因組測(cè)序和分析的重要論文,。這是由我國(guó)科學(xué)家發(fā)起和主導(dǎo)的國(guó)際黃瓜基因組計(jì)劃第一階段所取得的重大成果,對(duì)黃瓜和其它瓜類作物的遺傳改良,、基礎(chǔ)生物學(xué)研究,、以及對(duì)植物維管束系統(tǒng)的功能和進(jìn)化研究將發(fā)揮重要的推動(dòng)作用。黃瓜基因組論文是《自然—遺傳學(xué)》至今為止發(fā)表的為數(shù)不多的植物學(xué)論文之一,。
國(guó)際黃瓜基因組計(jì)劃由中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所于2007年初發(fā)起并組織,,由深圳華大基因研究院承擔(dān)基因組測(cè)序和組裝等技術(shù)工作。參與單位包括中國(guó)農(nóng)大,、北京師大,、美國(guó)康乃爾大學(xué)、威斯康星大學(xué)和加州大學(xué)戴維斯分校,、荷蘭瓦赫寧根大學(xué)以及澳大利亞多態(tài)性芯片技術(shù)中心。這是由我國(guó)發(fā)起的第一個(gè)多邊合作的大型植物基因組計(jì)劃,。
黃瓜基因組共有約3.5億個(gè)堿基對(duì),。項(xiàng)目采用了新一代測(cè)序技術(shù),自主開(kāi)發(fā)了一套全新的序列拼接軟件,,成功地以較低的成本繪制了黃瓜基因組的精細(xì)圖,。這一套測(cè)序策略已經(jīng)成為了其它植物基因組測(cè)序的模式。
在黃瓜基因組中共發(fā)現(xiàn)了26,682個(gè)基因,。項(xiàng)目創(chuàng)建了包含1800個(gè)分子標(biāo)記的高密度遺傳圖譜,,把基因組的20000多個(gè)基因定位在染色體上,,這給重要經(jīng)濟(jì)性狀基因的克隆帶來(lái)了極大的便利。目前已經(jīng)發(fā)現(xiàn)了與黃瓜產(chǎn)量,、品質(zhì),、抗病性等重要農(nóng)藝性狀相關(guān)的候選基因300多個(gè),已經(jīng)克隆了與產(chǎn)量相關(guān)的性別決定基因(和上海交大合作),、苦味基因和抗黑星病基因,,為這些重要性狀的分子育種提供了快捷準(zhǔn)確的工具。
黃瓜有7條染色體,,而甜瓜有12條染色體,。本研究表明:黃瓜7條染色體中的5條是由甜瓜的12條染色體中的10條兩兩融合而成的,這一發(fā)現(xiàn)解決了葫蘆科染色體進(jìn)化上一個(gè)多年未解的難題,。在基因區(qū)域,,黃瓜和甜瓜有95%的相似性,和西瓜也有超過(guò)90%的相似性,。我國(guó)瓜類作物的栽培面積在4000萬(wàn)畝以上,,黃瓜的基因組序列將推動(dòng)所有瓜類作物的生物學(xué)研究和遺傳育種。
植物的維管束系統(tǒng)相當(dāng)于人體的血管,,是植物營(yíng)養(yǎng)運(yùn)輸和長(zhǎng)距離信號(hào)傳導(dǎo)的主要通道,。黃瓜是維管束研究的模式系統(tǒng)。黃瓜基因組研究首次揭示了800個(gè)與維管束功能相關(guān)的基因,,并且發(fā)現(xiàn)它們所在的基因家族在低等植物向高等植物進(jìn)化的過(guò)程中得到了擴(kuò)增,。
在基因組測(cè)序完成的基礎(chǔ)上,國(guó)際黃瓜基因組計(jì)劃進(jìn)入下一個(gè)階段,,將系統(tǒng)地研究黃瓜種質(zhì)資源的遺傳多樣性和黃瓜基因表達(dá)及調(diào)控的特性,,將克隆主要的經(jīng)濟(jì)性狀基因,開(kāi)發(fā)廉價(jià)快捷的分子育種工具,,推動(dòng)基因組的研究成果直接應(yīng)用到優(yōu)良新品種的培育上,。(生物谷Bioon.com)
其他物種基因組研究:
Science:家蠶基因組測(cè)序成功
Nature:馬鈴薯晚疫病病菌基因組測(cè)序完成
PLoS ONE:繪制出首張黃瓜基因組圖譜
PLoS Biology:老鼠全基因組測(cè)序圖公布
Nature:高粱基因組完成測(cè)序
Nature Biotechnology:測(cè)出植物寄生型線蟲(chóng)基因組序列
Nature:三角褐指藻基因組完成測(cè)序
更多基因組信息。,。,。
生物谷推薦原始出處:
Nature Genetics 1 November 2009 | doi:10.1038/ng.475
The genome of the cucumber, Cucumis sativus L.
Sanwen Huang1,19, Ruiqiang Li2,3,19, Zhonghua Zhang1,19, Li Li2,19, Xingfang Gu1,19, Wei Fan2,19, William J Lucas4,19, Xiaowu Wang1, Bingyan Xie1, Peixiang Ni2, Yuanyuan Ren2, Hongmei Zhu2, Jun Li2, Kui Lin5, Weiwei Jin6, Zhangjun Fei7, Guangcun Li8, Jack Staub9, Andrzej Kilian10, Edwin A G van der Vossen11, Yang Wu5, Jie Guo5, Jun He1, Zhiqi Jia1, Yi Ren1, Geng Tian2, Yao Lu2, Jue Ruan2,12, Wubin Qian2, Mingwei Wang2, Quanfei Huang2, Bo Li2, Zhaoling Xuan2, Jianjun Cao2, Asan2, Zhigang Wu2, Juanbin Zhang2, Qingle Cai2, Yinqi Bai2, Bowen Zhao13, Yonghua Han6, Ying Li1, Xuefeng Li1, Shenhao Wang1, Qiuxiang Shi1, Shiqiang Liu1, Won Kyong Cho14, Jae-Yean Kim14, Yong Xu15, Katarzyna Heller-Uszynska10, Han Miao1, Zhouchao Cheng1, Shengping Zhang1, Jian Wu1, Yuhong Yang1, Houxiang Kang1, Man Li1, Huiqing Liang2, Xiaoli Ren2, Zhongbin Shi2, Ming Wen2, Min Jian2, Hailong Yang2, Guojie Zhang2,12, Zhentao Yang2, Rui Chen2, Shifang Liu2, Jianwen Li2, Lijia Ma2,12, Hui Liu2, Yan Zhou2, Jing Zhao2, Xiaodong Fang2, Guoqing Li2, Lin Fang2, Yingrui Li2,12, Dongyuan Liu2, Hongkun Zheng2,3, Yong Zhang2, Nan Qin2, Zhuo Li2, Guohua Yang2, Shuang Yang2, Lars Bolund2,16, Karsten Kristiansen17, Hancheng Zheng2,18, Shaochuan Li2,18, Xiuqing Zhang2, Huanming Yang2, Jian Wang2, Rifei Sun1, Baoxi Zhang1, Shuzhi Jiang1, Jun Wang2,17, Yongchen Du1 & Songgang Li2
Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.
1 Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
BGI-Shenzhen, Shenzhen, China.
2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
3 Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA.
4 College of Life Sciences, Beijing Normal University, Beijing, China.
5 National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
6 Boyce Thompson Institute and USDA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA.
7 High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.
8 US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, Madison, Wisconsin, USA.
9 Diversity Arrays Technology, Canberra, Australia.
10 Wageningen UR Plant Breeding, Wageningen, The Netherlands.
11 The Graduate University of Chinese Academy of Sciences, Beijing, China.
12 High School Affiliated to Renmin University of China, Beijing, China.
13 Division of Applied Life Science (BK21 and WCU program), PMBBRC and EB-NCRC, Gyeongsang National University, Jinju, Republic of Korea.
14 National Engineering Research Center for Vegetables, Beijing, China.
15 Institute of Human Genetics, University of Aarhus, Aarhus, Denmark.
16 Department of Biology, University of Copenhagen, Copenhagen, Denmark.
17 South China University of Technology, Guangzhou, China.
18 These authors contributed equally to this work.