德國比勒費(fèi)爾德大學(xué)7月9日報告說,,一個有德國研究者參加的國際研究小組最近完成了對最簡單的多細(xì)胞生物團(tuán)藻的基因組測序,??蒲腥藛T希望以此幫助探尋單細(xì)胞生物向多細(xì)胞生物演變的奧秘。
單細(xì)胞生物怎么能演變?yōu)槎嗉?xì)胞生物乃至人這樣高度復(fù)雜的生物,,一直是生物研究的重要課題,。一個由德國、美國,、加拿大和日本科研人員組成的研究小組選擇從團(tuán)藻入手,,因?yàn)閳F(tuán)藻的細(xì)胞種類十分簡單。此外,,團(tuán)藻還有一個單細(xì)胞近親——萊茵衣藻,,后者的基因組測序已在2007年完成。
在美國《科學(xué)》(Science)雜志7月9日發(fā)表的最新研究報告中,,上述研究小組發(fā)現(xiàn)團(tuán)藻的基因組有大約1.4億個堿基對,,包含大約1.45萬個基因,比人類基因總數(shù)僅少不到一半,。參與這項(xiàng)研究的比勒費(fèi)爾德大學(xué)專家說,,研究小組在比較團(tuán)藻和萊茵衣藻基因組時意外發(fā)現(xiàn),盡管這兩種生物的復(fù)雜程度和生命史存在很大差異,,二者的基因組卻有相似的蛋白編碼潛能,。與萊茵衣藻相比,專家在團(tuán)藻細(xì)胞內(nèi)只發(fā)現(xiàn)了很少該生物特有的基因,??蒲腥藛T由此推斷,從單細(xì)胞生物演變?yōu)槎嗉?xì)胞生物并非必需大幅提高基因的數(shù)目,,在這種演變中,,基因如何以及何時編碼合成特定的蛋白才具有決定意義。
德國專家說,,在單細(xì)胞生物向多細(xì)胞生物演變的分子機(jī)理研究方面,,團(tuán)藻基因組測序是了解這一分子機(jī)理的重要一步。長期而言,,研究簡單生物的分子機(jī)理有助于更好地理解人類等復(fù)雜生物的進(jìn)化史,。(生物谷Bioon.net)
第一個古代人類基因組測序完成或用于法醫(yī)鑒定領(lǐng)域
Nature:美科學(xué)家完成稻瘟病菌基因組測序
Nature:褐藻(Ectocarpus)基因組測序完成
PLoS Biology:老鼠全基因組測序圖公布
個人基因組測序?qū)⑴畈l(fā)展—生物谷專訪Knome公司總裁及CEO
全基因組測序——低至3萬元
生物谷推薦原文出處:
Science DOI: 10.1126/science.1188800
Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri
Simon E. Prochnik,1,* James Umen,2,*, Aurora M. Nedelcu,3 Armin Hallmann,4 Stephen M. Miller,5 Ichiro Nishii,6 Patrick Ferris,2 Alan Kuo,1 Therese Mitros,7 Lillian K. Fritz-Laylin,7 Uffe Hellsten,1 Jarrod Chapman,1 Oleg Simakov,8 Stefan A. Rensing,9 Astrid Terry,1 Jasmyn Pangilinan,1 Vladimir Kapitonov,10 Jerzy Jurka,10 Asaf Salamov,1 Harris Shapiro,1 Jeremy Schmutz,11 Jane Grimwood,11 Erika Lindquist,1 Susan Lucas,1 Igor V. Grigoriev,1 Rüdiger Schmitt,12 David Kirk,13 Daniel S. Rokhsar1,7,
The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138–mega–base pair genome of V. carteri and compared its ~14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal–specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.
1 U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
2 The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
3 University of New Brunswick, Department of Biology, Fredericton, New Brunswick E3B 5A3, Canada.
4 Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany.
5 Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
6 Biological Sciences, Nara Women’s University, Nara-shi, Nara Prefecture 630-8506, Japan.
7 Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
8 European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
9 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
10 Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
11 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
12 Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany.
13 Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.