由英國癌癥研究院領導的一個研究小組在新研究中發(fā)現(xiàn):一種稱作PPM1D的基因的罕見突變與乳腺癌和卵巢癌風險增高有關聯(lián),。這些突變并不遺傳,新發(fā)現(xiàn)有可能揭示癌癥形成的一種新機制,。研究論文發(fā)表在12月16日的《自然》(Nature)雜志上,。
研究結果表明,,攜帶PPM1D的婦女每五人中大約就有1人會在她們的一生中形成乳腺癌或卵巢癌,相比普通人群她們的乳腺癌風險提高了2倍,,卵巢癌風險超過了10倍,。這一發(fā)現(xiàn)有可能會對遺傳檢測和針對性預防產(chǎn)生影響,尤其是對于卵巢癌,,這一疾病常常是到晚期才被確診,。
研究小組在1150名患有乳腺癌或卵巢癌婦女中分析了507個與DNA修復相關的基因,在5名婦女中發(fā)現(xiàn)了PPM1D基因突變,。隨后他們對7781名患有乳腺癌或卵巢癌的婦女以及來自普通群體的5861人進行了PPM1D基因測序,。
研究發(fā)現(xiàn)癌癥婦女中有25人存在PPM1D基因缺陷,而普通群體只有1人,,顯示出高度顯著的統(tǒng)計學差異,。
研究發(fā)現(xiàn):突變基因不會遺傳給下一代,且并不是存在于每一個細胞中,。更令人驚訝的是,,研究人員在癌細胞、正常乳腺細胞及卵巢細胞中并未發(fā)現(xiàn)任何的PPM1D突變,;它們僅被發(fā)現(xiàn)存在于血細胞中,。這些研究結果表明:不同于其他已知增加乳腺癌和卵巢癌風險的基因,如BRCA1和BRCA2,,PPM1D是以一種完全不同的方式起作用,,有可能揭示了一種新致癌機制,。
研究小組發(fā)現(xiàn),突變使得PPM1D基因編碼分子比通常要短,。這樣的截短突變(truncating mutation)通常被認為會導致功能喪失,,然而,研究小組驚訝地發(fā)現(xiàn),,在這種情況下PPM1D突變似乎使得它更為活躍,。
該研究的領導者、癌癥研究院遺傳學主任,、皇家Marsden NHS信托基金會癌癥遺傳學臨床部門主任Nazneen Rahman教授說:“這是我們感到最有趣且令人興奮的研究發(fā)現(xiàn)之一,。”
“每一個階段的結果都不同于普遍認可的理論。盡管我們還不知道PPM1D突變與乳腺癌和卵巢癌相關聯(lián)的機制,,這一研究發(fā)現(xiàn)正刺激我們?nèi)滤伎蓟蚺c癌癥相關的方式,。”
“這些結果也可能在臨床中具有應用價值,尤其是對于卵巢癌,,其往往到晚期階段才被確診,。如果一名婦女知道她攜帶了一種PPM1D突變,且有五分之一的機會形成卵巢癌,,她或許可以考慮在生育之后采用鎖孔手術(keyhole surgery)摘除卵巢,。”
論文的研究人員之一、癌癥研究院首席執(zhí)行官Alan Ashworth教授說:“新研究發(fā)現(xiàn)真正轉變了遺傳突變導致癌癥機制的傳統(tǒng)認識,。當繼續(xù)解析這一謎題時,,我們有可能能夠獲得許多有關癌癥發(fā)生機制的有價值的見解。”
新遺傳測序技術使得研究人員能夠更深入分析基因,,這對于研究小組能夠建立PPM1D突變與癌癥之間的關聯(lián)至關重要,。研究發(fā)現(xiàn)這些突變僅存在于一些細胞中,這種所謂的嵌合模式(mosaic pattern)用舊的測序方法極難檢測出來,。
隨著更多的研究團隊利用這些深度測序技術開展研究,,在其他的基因和其他類型的癌癥患者中也有可能發(fā)現(xiàn)相似的嵌合突變。
Wellcome Trust基金會分子和生理學主管Michael Dunn博士說:“這一研究提供了一個奇妙的范例:利用新一代測序的能力來發(fā)現(xiàn)新的癌癥易感基因,,提供更好的診斷機會,。這一發(fā)現(xiàn)還為研究癌癥形成開辟了一個令人興奮的研究新途徑。”(生物谷Bioon.com)
doi:10.1038/nature11725
PMC:
PMID:
Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer
Elise Ruark, Katie Snape, Peter Humburg, Chey Loveday, Ilirjana Bajrami, Rachel Brough,Daniel Nava Rodrigues, Anthony Renwick, Sheila Seal, Emma Ramsay, Silvana Del Vecchio Duarte, Manuel A. Rivas, Margaret Warren-Perry, Anna Zachariou, Adriana Campion-Flora,Sandra Hanks, Anne Murray, Naser Ansari Pour, Jenny Douglas, Lorna Gregory, Andrew Rimmer, Neil M. Walker, Tsun-Po Yang, Julian W. Adlard, Julian Barwell, Jonathan Berg,Angela F. Brady, Carole Brewer, Glen Brice, Cyril Chapman, Jackie Cook, Rosemarie Davidson, Alan Donaldson, Fiona Douglas, Diana Eccles, D. Gareth Evans, Lynn Greenhalgh, Alex Henderson, Louise Izatt, Ajith Kumar, Fiona Lalloo, Zosia Miedzybrodzka, Patrick J. Morrison, Joan Paterson, Mary Porteous, Mark T. Rogers,Susan Shanley, Lisa Walker, Martin Gore, Richard Houlston, Matthew A. Brown, Mark J. Caufield, Panagiotis Deloukas, Mark I. McCarthy, John A. Todd, The Breast and Ovarian Cancer Susceptibility Collaboration, Wellcome Trust Case Control Consortium, Clare Turnbull, Jorge S. Reis-Filho, Alan Ashworth, Antonis C. Antoniou, Christopher J. Lord,Peter Donnelly & Nazneen Rahman
Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication1. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1Dare associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.