薔薇科是進化樹中的重要分支,,生產(chǎn)多種水果和花卉,經(jīng)濟價值很高,。薔薇科中最有商業(yè)價值的要數(shù)草莓屬Fragaria,、薔薇屬Rosa、懸鉤子屬Rubus 和李屬Prunus,,不過這些植物的生長習性和果實類型等都存在較大差異,。桃樹(Prunus persica)是李屬中的一種重要落葉喬木??茖W家們從純合子型桃樹獲得了高質(zhì)量的基因組序列,并對其進行了比較分析,,文章于3月24日發(fā)表在Nature Genetics雜志上,。
研究人員利用Sanger全基因組鳥槍法和Illumina測序平臺,獲得了桃樹Lovell品種高達265 million的基因組,,并且在整個染色體規(guī)模上進行了高質(zhì)量的組裝,。研究共鑒定了桃樹基因組中的27,852個蛋白編碼基因和非編碼RNA。此外,,研究團隊還對李屬的其它14種植物進行了全基因組重測序,,并由此分析了桃樹的栽培馴化路徑,提出了塑造桃樹基因組多樣性的主要遺傳學瓶頸,。
楊樹和柳樹這類快速生長的樹木,,是潛在的生物能源作物,人們一直希望能夠從中有效提取纖維素乙醇和能量含量更高的燃料,。不過要推廣這些樹木在生物能源領(lǐng)域的應用,,就需要對其生理學和遺傳學進行深入了解。現(xiàn)在桃樹基因組就為此提供了線索,,因為桃樹和楊樹的親緣關(guān)系比較近,。
“從DNA序列上來看,桃樹和楊樹的親緣關(guān)系很明顯,,”美國能源部聯(lián)合基因組研究所DOE JGI的植物項目帶頭人Jeremy Schmutz說,。
文章指出,通過比較基因組學分析,,桃樹基因組不僅可以幫助人們改善相關(guān)作物的種植,,還能增進我們對樹木的基礎生物學理解。研究團隊選取了六種測序完全的植物,,將其與桃樹的141個基因家族進行比較,,以闡明桃樹的獨特代謝通路,。他們主要針對的是木質(zhì)素生物合成通路,木質(zhì)素是將植物細胞粘在一起的分子“膠水”,,也是提取生物能源面臨的關(guān)鍵性障礙,。
研究人員指出,桃樹的基因組特點使其可以成為,,生物能源研究領(lǐng)域的理想植物模型,。在此基礎上,人們可以研究楊樹等相關(guān)植物基因組中的基因,,開發(fā)新方法以提高生物能源原料的產(chǎn)量,。楊樹基因組可以在DOE JGI's Plant Flagship Genomes(http://bit.ly/JGI-Plants)中查到。
“我們關(guān)注的是,,桃樹基因組中一個被稱為‘evergreen’的基因,,因為該基因能夠延長植物的生長期,”DOE JGI真核項目帶頭人Daniel Rokhsar說,,在他的領(lǐng)導下桃樹基因組的測序項目始于2007,。“理論上說,在楊樹中操縱這一基因,,可以增加生物能源所需的原料,。”(生物谷Bioon.com)
doi: 10.1038/ng.2586.
PMC:
PMID:
The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution.
The International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS.
Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.