科學(xué)家經(jīng)過長時(shí)間研究,近日終于揭開蒼蠅為何如此難以拍死的原因。據(jù)科學(xué)家介紹,,蒼蠅大腦反應(yīng)十分敏銳,,可以計(jì)算出蒼蠅拍的潛在逼近位置,并能立刻做出“逃生計(jì)劃”,,然后隨即做出起飛前動(dòng)作調(diào)整,,最終逃離“危險(xiǎn)地帶”??茖W(xué)家表示,,蒼蠅發(fā)現(xiàn)威脅后的反應(yīng)時(shí)間僅為100毫秒。
邁克爾·迪金森(Michael Dickinson)是美國加利福尼亞州技術(shù)學(xué)院的一名生物力學(xué)與昆蟲飛行研究領(lǐng)域的教授,,是整個(gè)生物學(xué)方面的權(quán)威,。
在過去的二十年中,他曾經(jīng)解開過各種各樣的生物學(xué)疑團(tuán),,使得無數(shù)不被人所知的昆蟲奧秘后來被人們所理解,。對(duì)于他來說,蒼蠅的反應(yīng)與飛行研究卻是一個(gè)十分棘手的問題,,為什么人們是如此的難以拍到蒼蠅,,蒼蠅為何能夠如此從容的就掙逃離人們布下“天羅地網(wǎng)”呢。
經(jīng)過長時(shí)間的研究探索,,迪金森教授終于將這個(gè)謎團(tuán)解開了,。迪金森教授利用高分辨率,高速數(shù)碼攝像機(jī)將蒼蠅的整個(gè)逃生過程記錄下來,。迪金森教授與他的助手研究中發(fā)現(xiàn),,在蒼蠅感知到潛在的威脅后,蒼蠅的大腦迅速將威脅逼近的位置進(jìn)行計(jì)算并確定方位,,并且與此同時(shí)大腦中“設(shè)計(jì)”出逃生方案,,選擇最佳的路徑以便最終躲避“拍殺”。此外迪金森教授表示,,從感知到最終離開的整個(gè)反應(yīng)過程僅僅為100毫秒,。
狄金森教授介紹說,“我們發(fā)現(xiàn)蒼蠅在得到“危機(jī)情報(bào)”后會(huì)立刻“構(gòu)思出逃跑方案”,,而并不是所謂的立刻逃生,。要知道,按照“構(gòu)思方案”逃生的成活率要遠(yuǎn)遠(yuǎn)大于立刻逃生,,而這也是我們?yōu)槭裁催@么難以“拍死”蒼蠅的一個(gè)主要原因,。事實(shí)上,在蒼蠅覺察到潛在威脅時(shí),,它可能會(huì)正做著任何一種動(dòng)作,,如進(jìn)食,、行走、甚至求愛,。但一旦它們感受到了威脅,它們能夠十分清楚的懂得下一步應(yīng)該如何去做,,它們可以立刻做出改變一小點(diǎn)或比較大的動(dòng)作變化,,以達(dá)到最佳的起飛前準(zhǔn)備動(dòng)作,并最終選擇正確的飛行方向,。而這也就意味著蒼蠅首先收集并匯總視覺信息,,然后觀察出威脅臨近的方位,大腦設(shè)計(jì)出“逃生方案”,,并之后將“逃生方案”傳達(dá)到腿部,,做出起飛前的動(dòng)作準(zhǔn)備,并最終逃離,,迪金森教授認(rèn)為這是一個(gè)極其復(fù)雜的“感知—行動(dòng)轉(zhuǎn)換系統(tǒng)”,。
迪金森教授的研究結(jié)果也提示了人們今后在拍擊蒼蠅時(shí)的最佳方法,迪金森教授表示,,“不要拍擊蒼蠅的啟動(dòng)位置,;觀察蒼蠅的調(diào)整方向,或者迷惑蒼蠅,,當(dāng)蒼蠅看到蒼蠅拍后,,讓其根本無法判斷出蒼蠅拍擊打方向,從而做不出調(diào)整飛行前動(dòng)作方向的判斷,。
相關(guān)專業(yè)人士分析表示,,迪金森教授的研究結(jié)果為研究蒼蠅的神經(jīng)系統(tǒng)開辟了一條新思路,并且迪金森教授所提出的蒼蠅腦部的“路線圖”以及在潛在危險(xiǎn)前,,蒼蠅會(huì)優(yōu)先根據(jù)所得信息將起飛前動(dòng)作進(jìn)行調(diào)整而不是冒然飛行的理論,,都為今后的昆蟲學(xué)研究提供了新的方向。據(jù)介紹,,迪金森教授的研究過程及結(jié)果已經(jīng)被發(fā)表在近期出版的生物學(xué)權(quán)威期刊《當(dāng)代生物學(xué)》雜志中,。(生物谷Bioon.com)
生物谷推薦原始出處:
Current Biology Published online: August 28, 2008
Visually Mediated Motor Planning in the Escape Response of Drosophila
Gwyneth Card1 and Michael H. Dickinson1,
1 Bioengineering, California Institute of Technology, Pasadena, California 91125
A key feature of reactive behaviors is the ability to spatially localize a salient stimulus and act accordingly. Such sensory-motor transformations must be particularly fast and well tuned in escape behaviors, in which both the speed and accuracy of the evasive response determine whether an animal successfully avoids predation [1]. We studied the escape behavior of the fruit fly, Drosophila, and found that flies can use visual information to plan a jump directly away from a looming threat. This is surprising, given the architecture of the pathway thought to mediate escape [2, 3]. Using high-speed videography, we found that approximately 200 ms before takeoff, flies begin a series of postural adjustments that determine the direction of their escape. These movements position their center of mass so that leg extension will push them away from the expanding visual stimulus. These preflight movements are not the result of a simple feed-forward motor program because their magnitude and direction depend on the flies' initial postural state. Furthermore, flies plan a takeoff direction even in instances when they choose not to jump. This sophisticated motor program is evidence for a form of rapid, visually mediated motor planning in a genetically accessible model organism.