有顏色的區(qū)域代表了有毒銅沉積的熱點地區(qū)——藍色表示有毒環(huán)境會持續(xù)3到4個月,綠色表示6到7個月,,而紅色圓圈則表示由人為因素導(dǎo)致銅毒性上升的區(qū)域。(圖片提供:A. Paytan等, PNAS Early Edition)
從地球大氣中飄落的富含營養(yǎng)的微粒對于浮游植物——能夠支撐海洋食物鏈的漂浮的微小藻類——來說是一個福音,。然而一項新的研究表明,,這些所謂的大氣粒子能夠使浮游植物中毒,從而破壞海洋生態(tài)系統(tǒng),,同時改變大氣中溫室氣體的含量,。
這些大氣粒子或浮質(zhì)可能是自然形成的,也可能是人為產(chǎn)生的,,它們包括富含礦物質(zhì)的塵埃、煤煙,、有機分子以及海鹽晶體,。之前的研究成果凸顯了這種浮質(zhì)沉積作用給海洋帶來的好處。這一過程向海洋傳送了高濃度的磷酸鹽,、氮和鐵,,從而刺激了浮游植物的生長。然而大氣粒子并非僅僅包含營養(yǎng)物質(zhì),。它們就像是一杯混合了各種物質(zhì)的雞尾酒,,同時還包含了與酸雨形成有關(guān)的污染物質(zhì)。然而迄今為止,,科學(xué)家們尚未留意大氣粒子對海洋構(gòu)成的潛在威脅,。
據(jù)美國《科學(xué)》雜志在線新聞報道,為了更加全面地了解大氣粒子與海洋生產(chǎn)力之間的關(guān)系,,美國加利福尼亞大學(xué)圣克魯斯分校的海洋學(xué)家Adina Paytan和同事,,著手對大氣粒子中的幾種成分——而非僅僅是營養(yǎng)物質(zhì)——對紅海浮游植物群落造成的影響進行了研究。研究人員采集了來自歐洲和非洲的大氣浮質(zhì),,并將它們與紅海的水樣混合在一起,。
結(jié)果顯示,那些暴露在歐洲大氣浮質(zhì)下的浮游植物群落生長得很旺盛,,相反,,暴露在非洲大氣浮質(zhì)下的浮游植物群落的生存狀況卻一落千丈。研究人員注意到,,與歐洲的大氣浮質(zhì)相比,,非洲大氣粒子所含的銅幾乎是前者的3倍。更多的試驗證實,,對于兩類浮游植物而言,,非洲大氣粒子中的銅含量是致命的,。研究小組在最近的美國《國家科學(xué)院院刊》(PNAS)網(wǎng)絡(luò)版上報告了這一研究成果。
為了對大氣粒子與全球海洋生態(tài)系統(tǒng)之間的關(guān)系有一個全面的了解,,Paytan和她的研究小組對海洋中銅沉積作用的總量進行了模擬,。研究人員最終確定了兩個由人為因素導(dǎo)致的銅沉積的熱點地區(qū)——印度東部的孟加拉灣,以及中國和東南亞附近的太平洋海域,。Paytan指出,,這些地區(qū)的浮游植物群落可能對有毒物質(zhì)更為敏感,這是因為它們或許并不適應(yīng)當(dāng)前的毒素濃度——比工業(yè)革命之前高出了50%,。
英國東英吉利亞大學(xué)的海洋與大氣化學(xué)家Alex Baker認為:“這是針對一個潛在新問題的有益的危險警告,。”美國塔拉哈西市佛羅里達州立大學(xué)的海洋學(xué)家Bill Landing則表示,盡管將他們的發(fā)現(xiàn)外推至全球海洋或許為時尚早,,但這一研究無疑是很好的第一步,。Landing說:“他們完成了一項很棒的工作,找出了那些潛在的影響,,而這些影響大多數(shù)都是不利的,。”(生物谷Bioon.com)
生物谷推薦原始出處:
PNAS March 9, 2009, doi: 10.1073/pnas.0811486106
Toxicity of atmospheric aerosols on marine phytoplankton
Adina Paytana,1, Katherine R. M. Mackeya,b, Ying Chena,2, Ivan D. Limac, Scott C. Doneyc, Natalie Mahowaldd, Rochelle Labiosae and Anton F. Postf
aInstitute of Marine Science, University of California, Santa Cruz, CA 95064;
bDepartment of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305;
cMarine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
dDepartment of Earth and Atmospheric Sciences, Cornell University, Cornell, NY 14850;
eUnited States Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025; and
Abstract
Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon rosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additsequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aeions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.