太陽光穿透海水反射到珊瑚礁上,,這些光線會穿透珊瑚,、與珊瑚共生的促進光合作用的海藻,以及其他生活在珊瑚礁上的生物,。那么究竟是什么原因讓這些生物避免了被烤焦的厄運呢,?一項新的研究表明,正是珊瑚在這里起到了遮光劑的作用——它能夠吸收紫外線,,并減少其對生活在珊瑚礁上的居民的傷害,。
之前的研究表明,構(gòu)成礁體的珊瑚的碳酸鈣外骨骼能夠在紫外光下發(fā)出熒光,,這意味著珊瑚礁能夠吸收紫外線,。為了搞清這種物質(zhì)是否能夠保護生活在珊瑚礁上的有機體,澳大利亞昆士蘭大學的海洋生物學家Ruth Reef和同事對??ˋiptasia pulchella)進行了研究,。這些珊瑚的親戚具有同前者類似的組織,并且同樣是共生光合海藻的家,。
在實驗室中,,研究小組將海葵放在珊瑚骨架或白色鉛管的上面,。與鉛管不同,,珊瑚骨架幾乎能夠吸收所有有害的紫外線,并釋放出黃色的熒光,。此外,,與放在鉛管上的海葵相比,,放在珊瑚上的??邮艿淖贤廨椛渲皇乔罢叩?/4,并且它們遭受的脫氧核糖核酸(DNA)損傷也僅是前者的1/7,。即便將這些珊瑚骨架研磨成細小的粉末,,研究小組依然發(fā)現(xiàn)了類似的現(xiàn)象,這意味著這種保護作用是因為珊瑚骨架的化學構(gòu)成所致,,而不是其粗糙而復雜的表面對紫外線產(chǎn)生的散射作用,。研究小組在11月25日的《科學公共圖書館·綜合》(PLoS One)網(wǎng)絡(luò)版上報告了這一研究成果。
Reef指出,,生活在海洋中的許多光合生物也會形成碳酸鈣,,而它們也可能通過這種方式保護自己免受紫外線輻射。她說:“石灰化過程大約出現(xiàn)在6億年前,,當時的紫外線水平要遠遠高于今天,。”此外,Reef強調(diào),,在大約發(fā)生于5.3億年前的寒武紀大爆發(fā)期間,,珊瑚骨骼異常豐富且多樣,這可能反映了“該時期自然界對珊瑚積聚的一種迫切需求,,那時許多生物體都向著較淺且富含氧氣的水域遷徙,,而那里的紫外線水平都很高”。摩納哥科學中心——一所海洋學研究機構(gòu)——的科學主管Denis Allemand則表示:“這種新被發(fā)現(xiàn)的特性是宿主針對共生生物的一種額外的,、意想不到的適應,。”
Reef和同事注意到,蝎子,、蜘蛛,,以及其他一些生物在暴露于紫外線下時也會發(fā)出熒光,這意味著遮光劑效應不止進化了一次,。(生物谷Bioon.com)
生物谷推薦原文出處:
PLoS ONE 4(11): e7995. doi:10.1371/journal.pone.0007995
Coral Skeletons Defend against Ultraviolet Radiation
Ruth Reef*, Paulina Kaniewska, Ove Hoegh-Guldberg
Centre for Marine Studies and the Austrailan Research Council (ARC) Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia
Background
Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage.
Methodology/Principal Findings
By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation.
Conclusions/Significance
Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life.