海洋上層起一個(gè)巨大的熱匯(吸熱裝置)的作用,,吸收了人類活動(dòng)所排放的溫室氣體產(chǎn)生的絕大部分過剩能量。這使得海洋熱含量潛在成為氣候變化的一個(gè)關(guān)鍵指標(biāo),。但要使其能夠用于評(píng)估全球能量平衡及作為氣候模型的一個(gè)限制條件,,我們就需要對(duì)這樣一個(gè)關(guān)鍵指標(biāo)在測量上的不確定性有很好的了解。
目前,,海洋熱吸收的幅度具有高度不確定性,,關(guān)于年際變化模式的估計(jì)值尤其相差較大。在一項(xiàng)重大國際合作研究中,,Lyman等人對(duì)能夠獲得的上層海洋熱含量異常曲線進(jìn)行了比較,,同時(shí)分析了與它們相關(guān)的不確定性的來源,包括在校正一次性深海溫度測量器的數(shù)據(jù)所存在的偏差時(shí)面臨的困難,。
他們發(fā)現(xiàn),,盡管存在不確定性,但有明確而可靠的證據(jù)證明,,在1993年和2008年間存在一個(gè)每平方米0.64瓦特的變暖趨勢,。 (生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09043
Robust warming of the global upper ocean
John M. Lyman1,2, Simon A. Good3, Viktor V. Gouretski4, Masayoshi Ishii5,6, Gregory C. Johnson2, Matthew D. Palmer3, Doug M. Smith3 & Josh K. Willis7
1 Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
2 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington 98115-6349, USA
3 Met Office Hadley Centre, Exeter EX1 3PB, UK
4 KlimaCampus, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
5 Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
6 Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan
7 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
A large (~1023?J) multi-decadal globally averaged warming signal in the upper 300?m of the world’s oceans was reported roughly a decade ago1 and is attributed to warming associated with anthropogenic greenhouse gases2, 3. The majority of the Earth’s total energy uptake during recent decades has occurred in the upper ocean3, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets4, 5, 6, 7, the global radiation imbalance8 and climate models5. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise5, 9, 10, 11, 12, 13, 14, 15, 16. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993–2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993–2008 of 0.64?W?m-2 (calculated for the Earth’s entire surface area), with a 90-per-cent confidence interval of 0.53–0.75?W?m-2.