1958年的一項(xiàng)未發(fā)表的研究的發(fā)現(xiàn)表明,,閃電,、火山活動(dòng)和有關(guān)的氣體可能相互反應(yīng)從而產(chǎn)生了地球的首批生命基本組成單元,。
Eric T. Parker及其同事分析了由著名化學(xué)家Stanley Miller進(jìn)行的一項(xiàng)此前未報(bào)告的實(shí)驗(yàn)得到的樣品,,Miller通過讓硫化氫,、水、甲烷,、二氧化碳和氨氣的混合物接觸熱和類似于閃電的放電從而模擬的原始地球環(huán)境?,F(xiàn)代化學(xué)分析技術(shù)的靈敏度是20世紀(jì)50年代研究方法的1000多倍,它在Miller的原始實(shí)驗(yàn)殘余物中探測到了含硫的氨基酸,、蛋白質(zhì)和非蛋白質(zhì)氨基酸,,以及其他化合物。只存在少量污染,。這個(gè)有53年歷史的研究標(biāo)志著最早的用放電試驗(yàn)合成含硫氨基酸,,它嘗試重建地球的原始環(huán)境。一旦在古老年代的自然環(huán)境下形成復(fù)雜化合物,,雨水可能把它們分布到潮汐環(huán)境中,,在那里它們可能發(fā)生進(jìn)一步的變化。
這組作者還研究了兩個(gè)碳質(zhì)隕石,,這兩個(gè)隕石都含有與Miller合成實(shí)驗(yàn)類似的氨基酸濃度,。這組作者說,這些發(fā)現(xiàn)提示,,特別是硫化氫在化學(xué)反應(yīng)中起到了重要作用,,它是地球——很可能還包括早期太陽系的其他地方——生命起源的先驅(qū)。(生物谷Bioon.com)
生物谷推薦原文出處:
PNAS doi: 10.1073/pnas.1019191108
Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment
Eric T. Parkera,1, Henderson J. Cleavesb, Jason P. Dworkinc, Daniel P. Glavinc, Michael Callahanc, Andrew Aubreyd, Antonio Lazcanoe, and Jeffrey L. Badaa,2
Abstract
Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.