生物谷報(bào)道:樹木一直被認(rèn)為是極為被動(dòng)的生命,隨風(fēng)而動(dòng),,遇雨而濕,。不過美國科學(xué)家最近的研究表明,至少在溫度的調(diào)節(jié)這一點(diǎn)上,,樹木有自己的“主見”,。他們研究認(rèn)為,不論天氣變得多么寒冷,,樹木都能將葉子的溫度平均控制在溫和的21.4°C,。相關(guān)論文6月11日在線發(fā)表于《自然》(Nature)雜志上,。
進(jìn)行此次研究的是美國賓夕法尼亞大學(xué)的Suzanna Richter和Brent Helliker。他們對加拿大和波多黎各的39種樹木進(jìn)行了同位素分析,,測量了樣本中O18和O16的比率,。通常來說,O18和O16的比率在溫暖濕潤的氣候要比在寒冷的北方為高,,且在干燥的氣候中也應(yīng)更高(這種情況下O16更容易從葉子擴(kuò)散到空氣中去),。
然而測量結(jié)果顯示,來自北部維度的測量比率要比預(yù)想得高,。研究人員表示,,有一種假設(shè)可以解釋這種情況,即認(rèn)為即使在年均溫度為-10°C的最北部,,樹葉也能夠維持21.4°C的平均溫度,。Helliker感嘆說:“這是在科學(xué)上第一次讓我目瞪口呆的時(shí)刻。”
不過Helliker強(qiáng)調(diào),,樹葉并不產(chǎn)熱,,也并非由超級絕緣材料制成。確切地說,,北部的樹木將樹葉叢生在一起,,“捕獲”了靜止空氣的邊界層(boundary layer)。邊界層像毯子一樣,,保溫保濕,,并有助樹木的新陳代謝。紅外成像顯示,,樹葉能比周圍的溫度高出好幾度,。
瑞士巴塞爾大學(xué)的植物生態(tài)學(xué)家Christian Körner對研究結(jié)果持懷疑態(tài)度。他認(rèn)為,,此次的分析依賴的是年均溫度,,沒有考慮樹木只在溫暖的季節(jié)、一天中溫暖的時(shí)刻進(jìn)行生長的事實(shí),。杉木和北部的其它樹木并不是控制自身溫度,,而是在溫度達(dá)到至少21.4°C的僅有的幾個(gè)月里進(jìn)行生長。他還爭論說細(xì)長的針葉樹葉根本無法捕獲熱量,。
不過,,美國維克森林大學(xué)的生物物理生態(tài)學(xué)家William Smith說,對杉木樹枝的實(shí)驗(yàn)室測量表明這一立場是“完全錯(cuò)誤的”,。他表示,,爭論已經(jīng)超出了學(xué)術(shù)的范圍,為了重建過去精確的氣候記錄以及預(yù)測未來的氣候變化,,研究人員需要弄清當(dāng)涉及到溫度時(shí)樹木的真正“被動(dòng)”程度,。(生物谷www.bioon.com)
生物谷推薦原始出處:
Nature,,doi:10.1038/nature07031,Brent R. Helliker,,Suzanna L. Richter
Subtropical to boreal convergence of tree-leaf temperatures
Brent R. Helliker1 & Suzanna L. Richter2
Department of Biology,
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Correspondence to: Brent R. Helliker1 Correspondence and requests for materials should be addressed to B.R.H (Email: [email protected]).
The oxygen isotope ratio (18O) of cellulose is thought to provide a record of ambient temperature and relative humidity during periods of carbon assimilation1, 2. Here we introduce a method to resolve tree-canopy leaf temperature with the use of 18O of cellulose in 39 tree species. We show a remarkably constant leaf temperature of 21.4 2.2 °C across 50° of latitude, from subtropical to boreal biomes. This means that when carbon assimilation is maximal, the physiological and morphological properties of tree branches serve to raise leaf temperature above air temperature to a much greater extent in more northern latitudes. A main assumption underlying the use of 18O to reconstruct climate history is that the temperature and relative humidity of an actively photosynthesizing leaf are the same as those of the surrounding air3, 4. Our data are contrary to that assumption and show that plant physiological ecology must be considered when reconstructing climate through isotope analysis. Furthermore, our results may explain why climate has only a modest effect on leaf economic traits5 in general.