人們通常認(rèn)為,是否愿意參加體育運(yùn)動(dòng)由主觀意志決定,。但是美國(guó)運(yùn)動(dòng)學(xué)家研究發(fā)現(xiàn),,動(dòng)物運(yùn)動(dòng)活躍性受到遺傳基因影響。這一結(jié)果暗示,,一些人可能生來(lái)就在運(yùn)動(dòng)方面比較懶惰,。
惰性天成
美國(guó)《時(shí)代》周刊網(wǎng)站31日?qǐng)?bào)道,北卡羅來(lái)納大學(xué)夏洛特分校研究人員所做鼠類(lèi)基因?qū)嶒?yàn)結(jié)果顯示,,所有影響鼠類(lèi)運(yùn)動(dòng)活躍性的因素中,,遺傳基因所占比重大約為50%。
研究人員在老鼠體內(nèi)發(fā)現(xiàn)大約20種與運(yùn)動(dòng)活躍性有關(guān)的不同染色體組分區(qū),。這些染色體組分區(qū)共同作用,,影響著老鼠個(gè)體的跑動(dòng)距離。統(tǒng)計(jì)結(jié)果顯示,能夠促進(jìn)運(yùn)動(dòng)活躍性的基因在75%的運(yùn)動(dòng)活躍老鼠體內(nèi)占主導(dǎo)地位,。
由于鼠類(lèi)基因組與人類(lèi)相似,,研究人員由實(shí)驗(yàn)結(jié)果推斷,人的運(yùn)動(dòng)活躍性可能與遺傳基因有關(guān),。也就是說(shuō),,一些人可能生來(lái)就不愛(ài)運(yùn)動(dòng)。
主導(dǎo)實(shí)驗(yàn)的運(yùn)動(dòng)機(jī)能學(xué)教授J·蒂莫西·萊特富特說(shuō):“我們以前認(rèn)為是否愛(ài)好運(yùn)動(dòng)取決于人們的主觀意志,,現(xiàn)在很顯然,,一個(gè)人活躍與否還與天生的因素有關(guān)。”
研究人員正準(zhǔn)備在人類(lèi)身上開(kāi)展類(lèi)似實(shí)驗(yàn),。“我們已經(jīng)繪制出一個(gè)相當(dāng)完整的與運(yùn)動(dòng)活躍性有關(guān)染色體組分區(qū)圖譜,,”萊特富特說(shuō)。
懶鼠聰明,?
這項(xiàng)實(shí)驗(yàn)以特別培育和挑選的9周大小老鼠為研究對(duì)象,。每只老鼠不僅享有單獨(dú)籠舍,還有一個(gè)可供跑動(dòng)的滾動(dòng)輪,,以便研究人員清晰觀察它們的運(yùn)動(dòng)活躍性,。
研究人員首先觀察老鼠在滾動(dòng)輪上的運(yùn)動(dòng)狀況,以跑動(dòng)速度,、持續(xù)時(shí)長(zhǎng)和跑動(dòng)距離為衡量標(biāo)準(zhǔn),,確定每只老鼠的運(yùn)動(dòng)活躍性,并按照活躍性高低把它們分為兩類(lèi),。
隨后,,研究人員讓兩類(lèi)老鼠相互交配,產(chǎn)生的310只后代再按照上述3個(gè)標(biāo)準(zhǔn)分為運(yùn)動(dòng)活躍性各不相同的數(shù)個(gè)小組,。
各組老鼠3周內(nèi)每天運(yùn)動(dòng)量統(tǒng)計(jì)結(jié)果顯示,,運(yùn)動(dòng)最為活躍的老鼠每天跑動(dòng)距離大約為8至12.87公里,相當(dāng)于人類(lèi)每天跑大約64.36至80.45公里,,而活躍性最低的老鼠每天跑動(dòng)距離大約為0.48公里,。
有趣的是,活躍的老鼠可能會(huì)整夜不停地在滾動(dòng)輪上跑動(dòng),,而不活躍的老鼠則會(huì)想出聰明的辦法逃避運(yùn)動(dòng),。例如,一只老鼠用木屑刨花阻擋滾動(dòng)輪轉(zhuǎn)動(dòng),,在輪里安然入睡,。與之類(lèi)似,在人類(lèi)社會(huì),,長(zhǎng)期以來(lái)一直有發(fā)明家因?yàn)閼胁女a(chǎn)生讓生活變輕松的發(fā)明的“段子”,。
意在防惰
《時(shí)代》周刊說(shuō),,萊特富特研究團(tuán)隊(duì)在鼠類(lèi)體內(nèi)發(fā)現(xiàn)不同染色體組分區(qū)并分析出這些分區(qū)間的相互作用,在研究領(lǐng)域尚屬首次,。
但是,,遺傳基因具體如何影響運(yùn)動(dòng)活躍性還是未解之謎。萊特富特說(shuō),,有一種解釋認(rèn)為,,基因通過(guò)影響肌肉運(yùn)動(dòng)方式實(shí)現(xiàn)對(duì)運(yùn)動(dòng)活躍性的控制,。例如,,基因促使肌肉提高能量利用效率并避免肌肉疲勞,從而促進(jìn)機(jī)體運(yùn)動(dòng)活躍性,。但是,,研究人員在實(shí)驗(yàn)中發(fā)現(xiàn),運(yùn)動(dòng)活躍性不同的老鼠肌肉組織功能并無(wú)明顯差異,。
另一種解釋認(rèn)為,,基因可影響大腦內(nèi)產(chǎn)生多巴胺和5-羥色胺等的神經(jīng)回路,進(jìn)而影響機(jī)體運(yùn)動(dòng)活躍性,。多巴胺和5-羥色胺已被證實(shí)可讓人類(lèi)產(chǎn)生欣悅感,。因此研究人員更傾向于贊同這種解釋。
萊特富特希望,,這一研究成果有助于找出克服惰性,、促進(jìn)人們運(yùn)動(dòng)的方法,而不是讓人們?cè)诙栊悦媲?ldquo;聽(tīng)天由命”,。這一研究成果發(fā)表在最新一期《遺傳雜志》雙月刊上,。(生物谷Bioon.com)
生物谷推薦原始出處:
Journal of Heredity, doi:10.1093/jhered/esn045
An Epistatic Genetic Basis for Physical Activity Traits in Mice
Larry J. Leamy, Daniel Pomp, and J. Timothy Lightfoot
From the Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (Leamy); the Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223 (Lightfoot); and the Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599 (Pomp); Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599 (Pomp); and the Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC 27599 (Pomp)
Address correspondence to L. J. Leamy at the address above, or e-mail: [email protected] .
We recently identified several (4–8) quantitative trait loci (QTL) for 3 physical activity traits (daily distance, duration, and speed voluntarily run) in an F2 population of mice derived from an original intercross of 2 strains that exhibited large differences in activity. These QTL cumulatively explained from 11% to 34% of the variation in these traits, but this was considerably less than their total genetic variability estimated from differences among inbred strains. We therefore decided to test whether epistatic interactions might account for additional genetic variation in these traits in this same population of mice. We conducted a full genome epistasis scan for all possible interactions of QTL between each pair of 20 chromosomes. The results of this scan revealed an abundance of epistasis, with QTL throughout the genome being involved in significant interactions. Overall, epistatic effects contributed an average of 26% of the total variation among the 3 activity traits. These results suggest that epistatic interactions of genes may play as important a role in the genetic architecture of physical activity traits as single-locus effects and need to be considered in future candidate gene identification studies.