美國,、西班牙,、德國和意大利科學家近日研究了一個克羅恩氏病相關基因后發(fā)現(xiàn),這種基因在4000萬年前失去功能之后,,又于2000萬年前“復活”,。相關論文已于3月6日發(fā)表在《公共科學圖書館·遺傳學》(PLoS Genetics)上。
這一基因稱為免疫相關鳥苷三磷酸酶基因(IRGM),,似乎很久之前已經(jīng)在舊世界和新世界猴的祖先身上被摧毀了,。不過當潛伏在基因組中的逆轉錄病毒將自身插入該基因中后,,它在人類和類人猿共同祖先體內成功復活。
美國華盛頓大學人類遺傳學家Evan Eichler表示:“這可能是第一個復活基因的例子,,概率就好比閃電2次擊中同一個地點,。”
在多數(shù)哺乳動物中,IRGM是一個基因大家族中的成員,,這一大家族中的基因被認為有助于消滅病原體,,比如有關肺結核的細菌,這種細菌會侵入宿主細胞,,并在其中繁衍,。但是在人類和一些靈長類中,這一基因大家族消亡到只剩2名成員,,IRGM 和IRGC?,F(xiàn)在還不清楚人類是如何在失去了如此多的IRGM(家族基因)后生存下來的,相比較而言,,缺乏這些基因的小鼠(比正常小鼠)更容易受到感染,。
有理由懷疑IRGM在人體中可能起重要的作用,不過,,研究人員已經(jīng)發(fā)現(xiàn),,一些人的IRGM基因前部帶有一個缺失,這可能改變該基因的表達并增加克羅恩氏病風險,,克羅恩氏病是一種有害的消化系統(tǒng)自體免疫病,。
在本周在《公共科學圖書館·遺傳學》發(fā)表的文章中,Eichler和他的同事對比了人類和其他靈長類的IRGM序列,。研究人員發(fā)現(xiàn),,分散在人類基因組中的重復DNA的一小段碎片,已經(jīng)在約4000萬年前插入了舊世界和新世界猴的共同祖先基因中,。這一插入滅活了IRGM,,廢止了該基因形成功能性蛋白質的能力。
接著,,大約2000萬年之后,,在人類和猿類祖先體內的一種逆轉錄病毒恰好插入了同樣的位置,這使得該IRGM基因再次獲得產(chǎn)生蛋白質的能力,。
Eichler表示,,仍然存在如下這種可能性——即這一切只是偶然事件,人類IRGM蛋白質沒有任何實際功能,。不過他補充說,,IRGM變體與克羅恩氏病的關系表明,該基因能在免疫系統(tǒng)中發(fā)揮作用,。
目前,,IRGM是唯一已知在其進化歷史上曾被殺死之后又復活的基因,。丹麥奧胡斯大學群體遺傳學家Mikkel Schierup說:“這是一個非常奇怪的我們將只能碰見一次的特例,還是具有更普遍重要性的例子,?或許我們將很快知道答案,,因為我們正在得到更多的比較性遺傳數(shù)據(jù)。”
Schierup表示,,這一發(fā)現(xiàn)模糊了基因和稱為“假基因”之間的界限,,“假基因”是指那些被突變摧毀的無功能性基因殘留。Schierup說:“研究表明,,假基因實際上有一些作用——它們有重新發(fā)揮功能的潛力,。”(生物谷Bioon.com)
生物谷推薦原始出處:
PLoS Genetics,doi:10.1371/journal.pgen.1000403,,Cemalettin Bekpen,,Evan E. Eichler
Death and Resurrection of the Human IRGM Gene
Cemalettin Bekpen1,2, Tomas Marques-Bonet1,3, Can Alkan1,2, Francesca Antonacci1, Maria Bruna Leogrande4, Mario Ventura4, Jeffrey M. Kidd1, Priscillia Siswara1, Jonathan C. Howard5, Evan E. Eichler1,2*
1 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America, 2 Howard Hughes Medical Institute, Seattle, Washington, United States of America, 3 Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain, 4 Universita' degli Studi di Bari, Bari, Italy, 5 Institute of Genetics, University of Cologne, Cologne, Germany
Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.