8月1日,,國際知名學術雜志《基因與發(fā)育》(Genes & Development)正式發(fā)表了我國科研人員關于水稻調控抗旱耐鹽新機理的研究論文,。這項研究成果由該所植物分子遺傳國家重點實驗室林鴻宣研究組完成。該研究組經過多年努力,,在水稻重要性狀遺傳與功能基因研究方面取得了多項重要成果,。這是該研究組第五次在國際著名學術雜志上發(fā)表水稻重要功能基因研究的成果。
隨著人口增加,、社會經濟發(fā)展及自然氣候條件變化,,水資源短缺、土壤鹽堿荒漠化的趨勢日益加劇,,干旱和鹽堿已成為造成農作物產量和質量下降的兩個主要環(huán)境因素,。為了解決這一農業(yè)難題,一直以來國內外植物學家都十分重視作物抗逆性的研究,,并把較高的抗逆性作為評價作物優(yōu)良品種的重要指標之一,。開展作物抗逆的分子遺傳機理研究可以為作物抗逆分子育種改良提供理論基礎。
為了尋找水稻中的抗逆相關基因,,林鴻宣研究組通過大規(guī)模篩選水稻EMS誘變的突變體庫,,獲得了一份較強抗旱、耐鹽,,而且穩(wěn)定遺傳的水稻突變體,,將該突變體命名為dst(drought and salt tolerance)。以此作為研究材料,,林鴻宣研究員指導博士生黃新元和晁代印等通過圖位克隆方法分離克隆了控制該抗逆性狀的基因DST,。該基因編碼一個只含有一個C2H2類型鋅指結構域的蛋白,隨后被證明是一個新型的核轉錄因子。在dst突變體中,,該蛋白的二個氨基酸的變異顯著地降低了DST的轉錄激活活性,。他們的研究表明,DST作為抗逆性的負調控因子,,當其功能缺失時可直接下調過氧化氫代謝相關基因(如過氧化物酶基因)的表達,,使清除過氧化氫的能力下降從而增加過氧化氫在保衛(wèi)細胞中的累積,促使葉片氣孔關閉,,減少水分蒸發(fā),,最終提高水稻的抗旱耐鹽能力。重要的是,,抗逆性增強的dst突變體在正常生長情況下其產量與對照品種(野生型)相比沒有明顯的變化,,為該基因在作物抗逆育種中的應用提供了便利。通過一系列實驗,,他們揭示了一種調節(jié)水稻抗旱耐鹽的分子調控新機制,。即旱鹽脅迫時,水稻通過下調DST的表達,,進而降低其下游過氧化氫代謝相關基因的表達,減小葉片氣孔的開度,,控制水分的流失,,從而增強抗干旱和耐受鹽脅迫的能力。這項研究成果加深了人們對作物抗逆性狀遺傳調控機理的認識,,同時也為作物抗逆分子育種提供了具有自主知識產權的重要新基因,。
這項研究得到國家自然科學基金委、科技部“973”項目和“863”專項,、中科院和上海市科委等的資助,。(生物谷Bioon.com)
生物谷推薦原始出處:
Genes & Dev. 2009. 23: 1709-1713 doi:10.1101/gad.1812409
A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control
Xin-Yuan Huang,1, Dai-Yin Chao,1, Ji-Ping Gao, Mei-Zhen Zhu, Min Shi and Hong-Xuan Lin,2
1 National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO2 uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H2O2) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H2O2 level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)—a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H2O2homeostasis—and identify a novel pathway for the signal transduction of DST-mediated H2O2-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops