據(jù)萊斯特大學(xué)遺傳學(xué)系教授Sir Alec Jeffreys的一項(xiàng)最新研究,,驅(qū)使人類進(jìn)化和多樣性的一個(gè)關(guān)鍵因子能夠解釋人類不同代之間的差異,。此外,Sir Alec Jeffreys教授也是DNA指紋的發(fā)現(xiàn)者,。
20多年前,,Jeffreys教授在人類基因組中發(fā)現(xiàn)了DNA的高度可變重復(fù)片段,即小衛(wèi)星(minisatellites),,這是一項(xiàng)里程碑式的發(fā)現(xiàn),。
而據(jù)在9月5日Nature Genetics雜志上的一篇文章,Sir Alec和他的研究團(tuán)隊(duì)又獲得了另一項(xiàng)重要發(fā)現(xiàn),,一特殊基因?qū)θ祟惗鄻有缘陌l(fā)生具有顯著影響,。
Sir Alec介紹說:"我們每一代的遺傳組成都是進(jìn)行重組得來的。剛開始的時(shí)候是打亂的,,這就像遺傳學(xué)的卡片包裹,,然后通過重組過程進(jìn)行結(jié)合,可以說這是導(dǎo)致多樣性最重要也是最基礎(chǔ)的"引擎",。我們?cè)谶^去10年間所做的工作就是理解人類重組的重要原因,,并對(duì)進(jìn)行重組熱點(diǎn)(recombination hotspots)進(jìn)行分子層面的定義。"
該研究關(guān)注一個(gè)叫PRDM9的基因,,該基因能夠使一種蛋白綁定到DNA上,,然后靶向激活熱點(diǎn)活性,。令人興奮的是,人類中PRDM9的不同形式在重組行為中表現(xiàn)出明顯的差異,,不僅僅是在熱點(diǎn)區(qū)域,,還包括一些能夠引起遺傳疾病的染色體重排。
反過來說,,PRDM9的變異源于基因本身的小衛(wèi)星,。研究人員表示,從小衛(wèi)星開始會(huì)逐漸形成DNA指紋,,并到達(dá)一個(gè)包含小衛(wèi)星的基因,,該過程在人類DNA多樣性的形成過程中承擔(dān)了重要的角色,同時(shí)也包括小衛(wèi)星的變化,。一種極為可能的情況就是該過程甚至促使本身的進(jìn)化,。
Sir Alec認(rèn)為這項(xiàng)研究成果結(jié)合該領(lǐng)域的其他工作勢(shì)必能使科學(xué)家了解我們個(gè)體遺傳特異性的根源。同樣還可以定義一個(gè)全新的遺傳風(fēng)險(xiǎn)因子類別,,為大量由于DNA重組錯(cuò)誤導(dǎo)致的疾病研究提供線索,。(生物谷Bioon.com)
生物谷推薦英文摘要:
Nature Genetics doi:10.1038/ng.658
PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans
Ingrid L Berg1, Rita Neumann1, Kwan-Wood G Lam1, Shriparna Sarbajna1, Linda Odenthal-Hesse1, Celia A May1 & Alec J Jeffreys1
PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice1, 2, 3. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling5. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability—specifically, a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7—implicating PRDM9 as a risk factor for some pathological genome rearrangements.