最近,,瑞士洛桑聯(lián)邦理工大學(xué)和洛桑大學(xué)合作,,使用機器人模擬生物基因在數(shù)百代間的進化,闡明了生物學(xué)界持久爭論的難題,,也為漢米爾頓親緣選擇規(guī)則提供了數(shù)量證據(jù),。該研究將于下周發(fā)表在開放雜志《科學(xué)公共圖書館—生物學(xué)》(PLoS Biology)上。
漢米爾頓親緣選擇規(guī)則于1964年由生物學(xué)家W·D·漢米爾頓提出,。該規(guī)則認為,如果一個家庭成員和其余家庭成員共享食物,,會增加家庭成員把基因流傳下來的機會,,許多基因是整個家族中所共有的。也即一個生物是否和其他個體共享其食物,,取決于它和其他生物基因的相似性。但驗證這一規(guī)則的活體生物試驗需要跨越上百代,,數(shù)量過于龐大,,幾十年來實驗幾乎不可能進行,漢米爾頓規(guī)則因此長期備受爭議,。
洛桑聯(lián)邦理工大學(xué)的機器人技術(shù)教授達里奧·弗洛里諾小組設(shè)計了一種機器人,模擬基因和基因組的功能迅速完成進化,,使科學(xué)家能分析檢測與基因特征相關(guān)的成本與收益效果。
此前合作小組也作過類似實驗,,是用覓食機器人執(zhí)行簡單的任務(wù),,如推動如種子似的物體到達目的地,將此過程多代進化,。那些不能把種子推到正確位置的機器人不能留下它們的程序編碼,,而較好執(zhí)行任務(wù)的機器人能將自身程序編碼復(fù)制、變異,,并與其他機器人傳給下一代的編碼重新結(jié)合——這是自然選擇的迷你模型,。
在新實驗中,,研究小組又增加一個新維度:一旦某個覓食機器人把種子推到了正確目的地,還要決定是否與其他機器人共享它,。他們還在機器人世界里創(chuàng)造了兄弟姐妹,、堂表兄妹、非親戚關(guān)系等社會群體,。進化實驗持續(xù)了500代,不斷重復(fù)著利他主義相互作用的各種場面:共享多少和個體成本,,這些共享現(xiàn)象按照漢米爾頓規(guī)則發(fā)生,。
實驗結(jié)果的數(shù)量和按漢米爾頓規(guī)則預(yù)測的數(shù)量驚人地相符。雖然漢米爾頓的最初理論并未考慮基因的相互作用,,而在覓食機器人中模擬基因運行,增加了一個基因和多個其他基因結(jié)合的綜合效果,,而漢米爾頓規(guī)則仍然成立,。試驗證明,漢米爾頓規(guī)則很好地解釋了一個利他基因何時能被傳到下一代,,何時不能。
這一發(fā)現(xiàn)同樣適用于蜂群機器人,。“從這一實驗中我們能提出運算法則,,而這種法則可以被用在任何類型機器人的進化合作中,。”弗洛里諾解釋說,,“用這種利他主義算法,,還能改進飛行機器人的控制系統(tǒng),,讓它們更有效地合作,在群體飛行中更加成功,。”(生物谷Bioon.com)
生物谷推薦原文出處:
PLoS Biol 9(5): e1000615. doi:10.1371/journal.pbio.1000615
A Quantitative Test of Hamilton's Rule for the Evolution of Altruism
Markus Waibel1*, Dario Floreano1, Laurent Keller2*
1 Laboratory of Intelligent Systems, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2 Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
Abstract
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb ? c>0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.