最近,,瑞士洛桑聯(lián)邦理工大學(xué)和洛桑大學(xué)合作,,使用機(jī)器人模擬生物基因在數(shù)百代間的進(jìn)化,,闡明了生物學(xué)界持久爭(zhēng)論的難題,,也為漢米爾頓親緣選擇規(guī)則提供了數(shù)量證據(jù),。該研究將于下周發(fā)表在開(kāi)放雜志《科學(xué)公共圖書(shū)館—生物學(xué)》(PLoS Biology)上。
漢米爾頓親緣選擇規(guī)則于1964年由生物學(xué)家W·D·漢米爾頓提出,。該規(guī)則認(rèn)為,,如果一個(gè)家庭成員和其余家庭成員共享食物,會(huì)增加家庭成員把基因流傳下來(lái)的機(jī)會(huì),,許多基因是整個(gè)家族中所共有的。也即一個(gè)生物是否和其他個(gè)體共享其食物,,取決于它和其他生物基因的相似性,。但驗(yàn)證這一規(guī)則的活體生物試驗(yàn)需要跨越上百代,數(shù)量過(guò)于龐大,,幾十年來(lái)實(shí)驗(yàn)幾乎不可能進(jìn)行,,漢米爾頓規(guī)則因此長(zhǎng)期備受爭(zhēng)議。
洛桑聯(lián)邦理工大學(xué)的機(jī)器人技術(shù)教授達(dá)里奧·弗洛里諾小組設(shè)計(jì)了一種機(jī)器人,,模擬基因和基因組的功能迅速完成進(jìn)化,,使科學(xué)家能分析檢測(cè)與基因特征相關(guān)的成本與收益效果。
此前合作小組也作過(guò)類(lèi)似實(shí)驗(yàn),,是用覓食機(jī)器人執(zhí)行簡(jiǎn)單的任務(wù),,如推動(dòng)如種子似的物體到達(dá)目的地,將此過(guò)程多代進(jìn)化,。那些不能把種子推到正確位置的機(jī)器人不能留下它們的程序編碼,,而較好執(zhí)行任務(wù)的機(jī)器人能將自身程序編碼復(fù)制、變異,,并與其他機(jī)器人傳給下一代的編碼重新結(jié)合——這是自然選擇的迷你模型,。
在新實(shí)驗(yàn)中,研究小組又增加一個(gè)新維度:一旦某個(gè)覓食機(jī)器人把種子推到了正確目的地,還要決定是否與其他機(jī)器人共享它,。他們還在機(jī)器人世界里創(chuàng)造了兄弟姐妹,、堂表兄妹、非親戚關(guān)系等社會(huì)群體,。進(jìn)化實(shí)驗(yàn)持續(xù)了500代,,不斷重復(fù)著利他主義相互作用的各種場(chǎng)面:共享多少和個(gè)體成本,這些共享現(xiàn)象按照漢米爾頓規(guī)則發(fā)生,。
實(shí)驗(yàn)結(jié)果的數(shù)量和按漢米爾頓規(guī)則預(yù)測(cè)的數(shù)量驚人地相符,。雖然漢米爾頓的最初理論并未考慮基因的相互作用,而在覓食機(jī)器人中模擬基因運(yùn)行,,增加了一個(gè)基因和多個(gè)其他基因結(jié)合的綜合效果,,而漢米爾頓規(guī)則仍然成立。試驗(yàn)證明,,漢米爾頓規(guī)則很好地解釋了一個(gè)利他基因何時(shí)能被傳到下一代,,何時(shí)不能。
這一發(fā)現(xiàn)同樣適用于蜂群機(jī)器人,。“從這一實(shí)驗(yàn)中我們能提出運(yùn)算法則,,而這種法則可以被用在任何類(lèi)型機(jī)器人的進(jìn)化合作中。”弗洛里諾解釋說(shuō),,“用這種利他主義算法,,還能改進(jìn)飛行機(jī)器人的控制系統(tǒng),讓它們更有效地合作,,在群體飛行中更加成功,。”(生物谷Bioon.com)
生物谷推薦原文出處:
PLoS Biol 9(5): e1000615. doi:10.1371/journal.pbio.1000615
A Quantitative Test of Hamilton's Rule for the Evolution of Altruism
Markus Waibel1*, Dario Floreano1, Laurent Keller2*
1 Laboratory of Intelligent Systems, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2 Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
Abstract
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb ? c>0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.