麻省理工學(xué)院的媒體實(shí)驗(yàn)室的科學(xué)家,發(fā)明了一種方法,以可逆的方式,使用脈沖黃光讓腦細(xì)胞沈寂下來,可以讓某些疾病如癲癇與帕金森氏癥產(chǎn)生的瘋狂神經(jīng)元活動(dòng)獲得控制,。
由于這類疾病必須移除造成不正常活動(dòng)的神經(jīng)元進(jìn)行治療,,而 MIT新的研究成果,,將有助于發(fā)生出導(dǎo)致視覺腦部義肢,并用以控制神經(jīng)元,,因此不需要為患者進(jìn)行手術(shù),。
研究領(lǐng)導(dǎo)人Edward Boyden表示,未來,,控制神經(jīng)元活動(dòng)可用于治療精神疾病與神經(jīng)相關(guān)病癥,,而且?guī)缀醪粫?huì)造成副作用。
Boyden 與媒體實(shí)驗(yàn)室研究伙伴 Xue Han 在3月21日出刊的 Public Library of Science ONE (PLOS One) 期刊上發(fā)表他們的結(jié)果,。
這項(xiàng)研究利用了一種稱為 halorhodopsin的基因(編按:這是一種古視紫紅質(zhì),,一種光驅(qū)動(dòng)的離子幫浦,特別是氯離子),,可在鹽分極高的鹵水里生存的嗜鹽細(xì)菌中發(fā)現(xiàn)它的存在,。在此細(xì)菌中,一種光活化氯化物幫浦蛋白質(zhì)Natronomas pharaonis可以幫助細(xì)菌制造能量,。
當(dāng)神經(jīng)元經(jīng)過改造,,讓它能夠表現(xiàn) halorhodopsin 基因,,研究者可透過黃光來抑制它們的活性。光線會(huì)活化這種氯化物幫浦,,那可驅(qū)動(dòng)氯離子進(jìn)入神經(jīng)元,,降低其電壓,并抑制其發(fā)射,。這種抑制效應(yīng)對(duì)于因神經(jīng)元發(fā)射失控而產(chǎn)生的疾病相當(dāng)有效,。
媒體實(shí)驗(yàn)室的神經(jīng)工程小組計(jì)劃在今年,于基因改造的小鼠身上研究這樣的裝置,。研究小組也計(jì)劃用這種新方式來研究神經(jīng)回路,再加上Boyden去年發(fā)明的一種技術(shù),,以上閃藍(lán)光的方式刺激的神經(jīng)元,,所以研究人員可利用藍(lán)光與黃光,對(duì)單一神經(jīng)元的刺激與抑制,,進(jìn)行敏銳的控制,。
(資料來源 : Bio.com)
部分英文原文:
PLOS One, Mar 21, 2007
Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution
Xue Han1,2, Edward S. Boyden2*
1 Stanford University School of Medicine, Stanford, California, United States of America, 2 Massachusetts Institute of Technology Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, 1channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the 1codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.
英文全文鏈接: