生物谷報道:美國斯坦福大學和加拿大麥基爾大學的研究人員近日在《神經(jīng)元》雜志上聯(lián)名發(fā)表文章說,,音樂和語言一樣,,是人類與生俱來的認知能力之一,對音樂一竅不通的人也天生具有“音樂細胞”,。
兩國科學家在他們的研究實驗中,,選取了18世紀英國作曲家博伊斯不太為人所知的作品,結(jié)果發(fā)現(xiàn),,參與實驗者每當感覺到音樂中的變化起伏時就會按下按鈕,。
研究顯示,對音樂根本不懂的人也具有對節(jié)奏和音調(diào)的感知能力,,能夠區(qū)分樂曲的開始和結(jié)束,,將接收到的聽覺信息分段并加以理解。
研究者發(fā)現(xiàn),我們聽到的聲音與大腦的情緒中樞腦扁桃體有直接聯(lián)系,,音樂對大腦的影響使我們的情緒與音樂直接聯(lián)系在一起,。研究人員指出,音樂會影響和改變?nèi)藗兊募雍头锤械某潭?,甚至會影響人們集中精力的程度?nbsp;
在19世紀,,德國神經(jīng)學家布羅德曼將人的大腦分為52個區(qū),其中第47區(qū)是負責語言和音樂的,。美國和加拿大科學家的這項研究指出,,當樂曲發(fā)生變化時,第47區(qū)也會隨之發(fā)生變化,,特別是在音樂停頓的間歇,,大腦似乎在利用音樂的暫停來破譯樂曲的變化。
但科學家也指出,,在對音樂信息進行處理的過程中,,大腦的幾個不同部分共同參與工作。(新華網(wǎng))
原始出處:
Neuron, Vol 55, 521-532, 02 August 2007
Neural Dynamics of Event Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal Networks
Devarajan Sridharan,1,2, Daniel J. Levitin,4 Chris H. Chafe,5 Jonathan Berger,5 and Vinod Menon1,2,3,
1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA
3 Neuroscience Institute at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
4 Departments of Psychology and Music Theory, School of Computer Science, and Program in Behavioural Neuroscience, McGill University, Montreal, QC, Canada
5 Department of Music and Center for Computer Research in Music and Acoustics, Stanford, CA 94305, USA
Corresponding author
Devarajan Sridharan
[email protected]
Corresponding author
Vinod Menon
[email protected]
Summary
The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.