生物谷報(bào)道:美國(guó)斯坦福大學(xué)和加拿大麥基爾大學(xué)的研究人員近日在《神經(jīng)元》雜志上聯(lián)名發(fā)表文章說(shuō),音樂(lè)和語(yǔ)言一樣,是人類(lèi)與生俱來(lái)的認(rèn)知能力之一,,對(duì)音樂(lè)一竅不通的人也天生具有“音樂(lè)細(xì)胞”,。
兩國(guó)科學(xué)家在他們的研究實(shí)驗(yàn)中,,選取了18世紀(jì)英國(guó)作曲家博伊斯不太為人所知的作品,,結(jié)果發(fā)現(xiàn),參與實(shí)驗(yàn)者每當(dāng)感覺(jué)到音樂(lè)中的變化起伏時(shí)就會(huì)按下按鈕,。
研究顯示,,對(duì)音樂(lè)根本不懂的人也具有對(duì)節(jié)奏和音調(diào)的感知能力,能夠區(qū)分樂(lè)曲的開(kāi)始和結(jié)束,,將接收到的聽(tīng)覺(jué)信息分段并加以理解,。
研究者發(fā)現(xiàn),我們聽(tīng)到的聲音與大腦的情緒中樞腦扁桃體有直接聯(lián)系,,音樂(lè)對(duì)大腦的影響使我們的情緒與音樂(lè)直接聯(lián)系在一起,。研究人員指出,音樂(lè)會(huì)影響和改變?nèi)藗兊募?dòng)和反感的程度,,甚至?xí)绊懭藗兗芯Φ某潭取?nbsp;
在19世紀(jì),,德國(guó)神經(jīng)學(xué)家布羅德曼將人的大腦分為52個(gè)區(qū),,其中第47區(qū)是負(fù)責(zé)語(yǔ)言和音樂(lè)的。美國(guó)和加拿大科學(xué)家的這項(xiàng)研究指出,,當(dāng)樂(lè)曲發(fā)生變化時(shí),,第47區(qū)也會(huì)隨之發(fā)生變化,特別是在音樂(lè)停頓的間歇,,大腦似乎在利用音樂(lè)的暫停來(lái)破譯樂(lè)曲的變化,。
但科學(xué)家也指出,在對(duì)音樂(lè)信息進(jìn)行處理的過(guò)程中,,大腦的幾個(gè)不同部分共同參與工作,。(新華網(wǎng))
原始出處:
Neuron, Vol 55, 521-532, 02 August 2007
Neural Dynamics of Event Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal Networks
Devarajan Sridharan,1,2, Daniel J. Levitin,4 Chris H. Chafe,5 Jonathan Berger,5 and Vinod Menon1,2,3,
1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA
3 Neuroscience Institute at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
4 Departments of Psychology and Music Theory, School of Computer Science, and Program in Behavioural Neuroscience, McGill University, Montreal, QC, Canada
5 Department of Music and Center for Computer Research in Music and Acoustics, Stanford, CA 94305, USA
Corresponding author
Devarajan Sridharan
[email protected]
Corresponding author
Vinod Menon
[email protected]
Summary
The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.