來(lái)自貝勒醫(yī)學(xué)院(Baylor College of Medicine ,BCM)的研究人員在《自然—神經(jīng)學(xué)》(Nature Neuroscience)雜志上發(fā)表了有關(guān)內(nèi)在的兩個(gè)基因突變(引發(fā)癲癇癥)也許會(huì)“負(fù)負(fù)得正”的研究成果,。
BCM神經(jīng)生物學(xué)與分子人類遺傳學(xué)教授Jeffrey L.Noebels博士表示,,“在大腦遺傳學(xué)中,兩個(gè)錯(cuò)誤負(fù)負(fù)得正”,,“我們認(rèn)為這些發(fā)現(xiàn)在臨床研究中意義重大——我們正在朝著利用基因預(yù)測(cè)神經(jīng)疾病方面發(fā)展”,。而且這些發(fā)現(xiàn)也許指出了一種通過(guò)基因靶向治療法來(lái)治療癲癇癥的新方法,。
Noebels博士進(jìn)一步解釋道,,“假設(shè)你在鉀離子通道方面具有缺陷,那么阻斷某些鈣離子通道的藥物也許就會(huì)有效”,,Noebels帶領(lǐng)在其實(shí)驗(yàn)室進(jìn)行博士后研究的Ed Glasscock博士通過(guò)缺陷型小鼠實(shí)驗(yàn)證明了以上觀點(diǎn),。
其中一個(gè)突變來(lái)自Kcna1基因,這個(gè)基因的作用是管理鉀離子在細(xì)胞內(nèi)的進(jìn)出,,Kcna1基因突變會(huì)影響大腦顳葉(temporal lobe,,一個(gè)處理視覺,聽覺等的區(qū)域),,引起嚴(yán)重的痙攣反應(yīng)(seizures),,甚至引起幼鼠的突然死亡。
另一個(gè)突變則與一個(gè)鈣離子通道基因(Cacna1a)相關(guān),,這種突變會(huì)引起與失神癲癇(absence epilepsy)有關(guān)的一種特殊seizure,,當(dāng)患上這種seizure的時(shí)候,患者也許就會(huì)凝視著遠(yuǎn)方,,而不會(huì)出現(xiàn)癲癇通常出現(xiàn)的抽搐或顫動(dòng),。
當(dāng)幼鼠中同時(shí)出現(xiàn)這兩種突變,幼鼠會(huì)表現(xiàn)出seizures現(xiàn)象急劇的減少,,并且也不會(huì)出現(xiàn)與鉀離子通道有關(guān)的突然致死現(xiàn)象,。
Noebels認(rèn)為,“不同于同時(shí)篩選一個(gè)‘壞’基因,,這也許對(duì)于繪制許多,,甚至所有的基因的整體圖譜來(lái)說(shuō)是必需的,因?yàn)檫@能精確評(píng)估譬如癲癇之類的許多常見失序癥中任何單基因缺陷的真實(shí)遺傳風(fēng)險(xiǎn),。幸運(yùn)的是,,由于神經(jīng)基因組學(xué)(neurogenomics)領(lǐng)域的快速技術(shù)進(jìn)步,個(gè)體病人很快就能獲得這種背景信息資料了。”
許多不同的基因會(huì)引起痙攣失序癥(seizure disorders),,在一些情況下,,這些基因編碼離子通道,之前的研究表面這些基因的復(fù)合會(huì)導(dǎo)致癲癇癥狀更加嚴(yán)重,,但是這一研究證明某些基因的拼合也許會(huì)抑制癥狀的發(fā)生,,就像是“斷路”了,Noebels表示,。
原始出處:
Nature Neuroscience
Published online: 4 November 2007 | doi:10.1038/nn1999
Masking epilepsy by combining two epilepsy genes
Edward Glasscock1, Jing Qian1, Jong W Yoo1 & Jeffrey L Noebels1,2,3
Inherited errors in ion channel genes comprise the largest subset of monogenic causes of idiopathic epilepsy, and pathogenic variants contribute to genetic risk in the complex inheritance of this common disorder. We generated a digenic mouse model of human idiopathic epilepsy by combining two epilepsy-associated ion channel mutations with mutually opposing excitability defects and overlapping subcellular localization. We found that increasing membrane excitability by removing Shaker-like K+ channels, which are encoded by the Kcna1 gene, masked the absence epilepsy caused by a P/Q-type Ca2+ channelopathy due to a missense mutation in the Cacna1a gene. Conversely, decreasing network excitability by impairing Cacna1a Ca2+-channel function attenuated limbic seizures and sudden death in Kcna1-null mice. We also identified intermediate excitability phenotypes at the network and axonal levels. Protective interactions between pathogenic ion channel variants may markedly alter the clinical expression of epilepsy, highlighting the need for comprehensive profiling of this candidate gene set to improve the accuracy of genetic risk assessment of this complex disease.