美德科學(xué)家獨(dú)立進(jìn)行的兩項(xiàng)最新研究表明,單個(gè)神經(jīng)元的激發(fā)就足以影響學(xué)習(xí)和行為,。這一結(jié)論挑戰(zhàn)了人們長期以來的認(rèn)識,,即數(shù)千個(gè)神經(jīng)元的有序排列才能夠產(chǎn)生一個(gè)行為反應(yīng)。這兩篇論文12月19日在線發(fā)表于《自然》雜志上,。
進(jìn)行最新研究的是美國霍華德•休斯醫(yī)學(xué)院的神經(jīng)生物學(xué)家Karel Svoboda和同事,,以及洪堡大學(xué)Michael Brecht領(lǐng)導(dǎo)的一個(gè)獨(dú)立研究小組。他們的研究結(jié)論為一項(xiàng)飽受爭議的神經(jīng)理論——神經(jīng)元“稀疏編碼”假說(sparse-coding hypothesis)提供了依據(jù)和支持,,該理論認(rèn)為,,少量的神經(jīng)元就能夠產(chǎn)生反應(yīng)沖動(dòng)。
Svoboda和Brecht的小組分別研究了嚙齒動(dòng)物大腦接收胡須感覺輸入的區(qū)域——體覺皮層(barrel cortex),,它包括大約200萬個(gè)神經(jīng)元,。盡管兩個(gè)小組利用技術(shù)不同,但都能刺激特定的神經(jīng)元,。
Svoboda和同事創(chuàng)造出一種基因改造小鼠,,它們能夠在體覺皮層與學(xué)習(xí)相關(guān)的區(qū)域表達(dá)特定的熒光蛋白。這種通常存在于海藻中的蛋白通過令離子通過細(xì)胞膜,,創(chuàng)造出電流來對藍(lán)光發(fā)生響應(yīng),。在向小鼠頭骨植入一塊玻璃窗后,,研究人員又在它們頭上安裝了小型的發(fā)光二極管。研究人員可以通過改變二極管發(fā)光強(qiáng)度來調(diào)節(jié)細(xì)胞膜上作用的強(qiáng)度,。
Svoboda等人讓小鼠學(xué)習(xí)在受到光線刺激后選擇籠子中的兩個(gè)特定位置其中之一,,如果正確,小鼠將能得到喝水的獎(jiǎng)勵(lì),。研究人員發(fā)現(xiàn),,小鼠最少只需要激活60個(gè)神經(jīng)元,就能學(xué)會(huì)按照光脈沖產(chǎn)生反應(yīng),。
Brecht小組利用的是另一種手段,。研究人員將能夠激活單個(gè)神經(jīng)元的電極深深植入大鼠的體覺皮層中。隨后,,他們訓(xùn)練這些大鼠在感受到神經(jīng)刺激后,,利用舌頭舔動(dòng)作來打斷一束光線。結(jié)果發(fā)現(xiàn),,平均而言,,大鼠有5%的時(shí)間是對單個(gè)神經(jīng)元的激勵(lì)產(chǎn)生響應(yīng)的。不過,,這種響應(yīng)的程度和范圍高度依賴于被激發(fā)的是哪個(gè)神經(jīng)元,。比如,一些神經(jīng)元能夠喚起50%時(shí)間的響應(yīng),。
德國尤利希研究中心(Jülich Research Centre)的神經(jīng)生物學(xué)家Dirk Feldmeyer表示,,新的結(jié)論會(huì)對科學(xué)家如何看待神經(jīng)系統(tǒng)網(wǎng)絡(luò)產(chǎn)生根本的影響。“這真的能夠改變?nèi)藗兊目捶?,即認(rèn)為大腦皮層只會(huì)對大量神經(jīng)元活動(dòng)的激勵(lì)產(chǎn)生響應(yīng),。”
不過,Svoboda和Brecht都坦然承認(rèn),,他們的發(fā)現(xiàn)無法終結(jié)關(guān)于“稀疏編碼”假說的爭論,。Svoboda表示,“我們的研究表明動(dòng)物能夠讀出十分稀疏的編碼,,但并不意味著正常行為的編碼就是稀疏的,。”而要真正弄清這一問題,需要極度敏感的成像技術(shù)來探測神經(jīng)活動(dòng),。“這個(gè)問題尚未以令人滿意的方式解決,,還有一些技術(shù)障礙需要克服。”Svoboda說,。(科學(xué)網(wǎng) 任霄鵬/編譯)
原始出處:
Nature advance online publication 19 December 2007 | doi:10.1038/nature06445; Received 19 August 2007; Accepted 2 November 2007; Published online 19 December 2007
Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice
Daniel Huber1,2, Leopoldo Petreanu1,2, Nima Ghitani1, Sachin Ranade2, Tomá Hromádka2, Zach Mainen2 & Karel Svoboda1,2
Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
Correspondence to: Karel Svoboda1,2 Correspondence and requests for materials should be addressed to K.S. (Email: [email protected]).
Top of page
Electrical microstimulation can establish causal links between the activity of groups of neurons and perceptual and cognitive functions1, 2, 3, 4, 5, 6. However, the number and identities of neurons microstimulated, as well as the number of action potentials evoked, are difficult to ascertain7, 8. To address these issues we introduced the light-gated algal channel channelrhodopsin-2 (ChR2)9 specifically into a small fraction of layer 2/3 neurons of the mouse primary somatosensory cortex. ChR2 photostimulation in vivo reliably generated stimulus-locked action potentials10, 11, 12, 13 at frequencies up to 50 Hz. Here we show that naive mice readily learned to detect brief trains of action potentials (five light pulses, 1 ms, 20 Hz). After training, mice could detect a photostimulus firing a single action potential in approximately 300 neurons. Even fewer neurons (approximately 60) were required for longer stimuli (five action potentials, 250 ms). Our results show that perceptual decisions and learning can be driven by extremely brief epochs of cortical activity in a sparse subset of supragranular cortical pyramidal neurons.