圖片說明:眼部插入特殊蛋白能使失明小鼠恢復(fù)對光線的感覺。
(圖片來源:Punchstock)
瑞士、美國及加拿大科學家近日研究發(fā)現(xiàn),,將一種來自藻類的光敏蛋白插入到失明小鼠的眼部細胞后,使得它們成功地恢復(fù)了對光線的感覺,。研究人員希望,,類似的方法將來可以用于治療特定種類的人類失明。相關(guān)論文4月27日在線發(fā)表于《自然—神經(jīng)學》(Nature Neuroscience)上,。
這種光敏蛋白名為channelrhodopsin-2(ChR2),,藻類用它來進行光合作用。一些科學家對于用它來替換動物眼部受損或缺失的光感受器極為感興趣,。在患老年黃斑變性(AMD)的人眼部,,這種光感受器的損傷尤為常見,但是一直沒有合適的治療方法,。
在最新的研究中,,瑞士Friedrich Miescher生物醫(yī)學研究所(FMI)的Botond Roska和研究小組關(guān)注的是眼部完全喪失光感受器的小鼠。這些光感受器通常負責在視覺圖像形成之前將光輸送到雙極細胞(bipolar cells),。
研究人員使用一種無害病毒搭載ChR2進入到小鼠的雙極細胞,。雖然以這種方式進入的雙極細胞量只占總量的7%,但已足夠光信號傳輸?shù)揭暰W(wǎng)膜的下一層——神經(jīng)節(jié)細胞(ganglion cells),,直至最終到達大腦,。結(jié)果發(fā)現(xiàn),當照射燈光時,,與普通小鼠對光線完全無反應(yīng)相比,,黑暗中的實驗小鼠跳躍起來,表明它們感受到了光線,。
研究人員隨后對這些小鼠的視覺進行了測試,,結(jié)果表明實驗小鼠要勝過普通小鼠。但是實驗小鼠的視覺恢復(fù)程度到底如何不得而知,。Roska說:“畢竟,,你又沒法問它們,。”
目前,Roska及同事已經(jīng)和一些臨床小組建立了合作關(guān)系,,以在人類身上研發(fā)這項技術(shù),。不過Roska表示,即使這樣,,它也很可能是最后的可供選擇的臨床方案,。他說,如果哪怕還有一點點的視覺殘留,,采用其它治療方法可能更為有效,,“這一方法應(yīng)該只適用于完全失去視覺的時候。”(科學網(wǎng) 梅進/編譯)
(Nature Neuroscience),,doi:10.1038/nn.2117,,Pamela S Lagali,Botond Roska
生物谷推薦原始出處:
Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration
Pamela S Lagali1,4, David Balya1,4, Gautam B Awatramani1,3,4, Thomas A Münch1, Douglas S Kim2, Volker Busskamp1, Constance L Cepko2 & Botond Roska1
Abstract
Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6brd1 (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks.