腦機(jī)接口(brain-computer interface, BCI),,有時(shí)也稱作direct neural interface或者brain-machine interface,,它是在人或動(dòng)物腦(或者腦細(xì)胞的培養(yǎng)物)與外部設(shè)備間建立的直接連接通路。在單向腦機(jī)接口的情況下,計(jì)算機(jī)或者接受腦傳來(lái)的命令,或者發(fā)送信號(hào)到腦(例如視頻重建),但不能同時(shí)發(fā)送和接收信號(hào),。
腦-機(jī)接口是治療因脊髓損傷造成的癱瘓的一種很有希望的方法,該方法可將控制信號(hào)從大腦重新路由到肌肉,。2000年,,科學(xué)家曾成功實(shí)現(xiàn)了一個(gè)能夠在夜猴操縱一個(gè)游戲桿來(lái)獲取食物時(shí)重現(xiàn)其手臂運(yùn)動(dòng)的腦機(jī)接口。
日前,,美國(guó)華盛頓大學(xué)科學(xué)家研究表明,,猴子可學(xué)習(xí)利用從腦中單個(gè)神經(jīng)元人工路由出的信號(hào)來(lái)移動(dòng)一個(gè)暫時(shí)癱瘓的手腕,人們以前并沒(méi)有將這些神經(jīng)元與該運(yùn)動(dòng)聯(lián)系起來(lái)。這一結(jié)果對(duì)于今后腦-機(jī)接口的設(shè)計(jì)可能會(huì)有重要意義,,這種接口的設(shè)計(jì)傳統(tǒng)上依賴于專(zhuān)門(mén)的神經(jīng)元類(lèi)群的活動(dòng),。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature 456, 639-642 (4 December 2008) | doi:10.1038/nature07418
Direct control of paralysed muscles by cortical neurons
Chet T. Moritz1, Steve I. Perlmutter1 & Eberhard E. Fetz1
1 Department of Physiology & Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington 98195, USA
Top of pageA potential treatment for paralysis resulting from spinal cord injury is to route control signals from the brain around the injury by artificial connections. Such signals could then control electrical stimulation of muscles, thereby restoring volitional movement to paralysed limbs1, 2, 3. In previously separate experiments, activity of motor cortex neurons related to actual or imagined movements has been used to control computer cursors and robotic arms4, 5, 6, 7, 8, 9, 10, and paralysed muscles have been activated by functional electrical stimulation11, 12, 13. Here we show that Macaca nemestrina monkeys can directly control stimulation of muscles using the activity of neurons in the motor cortex, thereby restoring goal-directed movements to a transiently paralysed arm. Moreover, neurons could control functional stimulation equally well regardless of any previous association to movement, a finding that considerably expands the source of control signals for brain-machine interfaces. Monkeys learned to use these artificial connections from cortical cells to muscles to generate bidirectional wrist torques, and controlled multiple neuron–muscle pairs simultaneously. Such direct transforms from cortical activity to muscle stimulation could be implemented by autonomous electronic circuitry, creating a relatively natural neuroprosthesis. These results are the first demonstration that direct artificial connections between cortical cells and muscles can compensate for interrupted physiological pathways and restore volitional control of movement to paralysed limbs.