丹麥哥本哈根大學(xué)的研究人員采用熒光共振能量轉(zhuǎn)移法(FRET),,成功地實(shí)現(xiàn)了神經(jīng)細(xì)胞囊泡融合過(guò)程的實(shí)時(shí)成像,。這一技術(shù)的運(yùn)用不僅會(huì)增進(jìn)人們對(duì)神經(jīng)系統(tǒng)疾病和病毒感染的了解,還可能有助于開(kāi)發(fā)出治療神經(jīng)疾病和精神疾病(如精神分裂癥,、抑郁癥,、帕金森氏癥、早老性癡呆病)的新療法,。該研究成果刊登在最近出版的《美國(guó)國(guó)家科學(xué)院院刊》上,。
囊泡是裝載神經(jīng)遞質(zhì)的微小容器,這種只有納米級(jí)大小的小囊是神經(jīng)細(xì)胞彼此溝通的橋梁,。囊泡與神經(jīng)細(xì)胞的膜融合,,會(huì)向周圍釋放神經(jīng)遞質(zhì),從而被下一個(gè)神經(jīng)細(xì)胞檢測(cè)到,,神經(jīng)信號(hào)以此方式進(jìn)行傳遞,。神經(jīng)細(xì)胞的這種溝通過(guò)程一旦中斷,會(huì)造成多種疾病和精神紊亂,,如抑郁癥,。然而,目前科學(xué)家們對(duì)于這種囊泡融合是如何進(jìn)行的依然缺乏詳細(xì)了解,。
哥本哈根大學(xué)神經(jīng)學(xué)與藥理學(xué)系和納米科學(xué)中心的研究人員使用了一種稱為熒光共振能量轉(zhuǎn)移的方法,。這種方法眾所周知,但研究人員的使用方式卻與眾不同,。他們?cè)趯?shí)驗(yàn)室中制作出含有熒光供體分子的囊泡和固定在一個(gè)表面的含熒光受體分子的細(xì)胞膜,。只有當(dāng)兩個(gè)不同的熒光分子彼此接近對(duì)方時(shí),才會(huì)發(fā)出熒光,,研究人員據(jù)此檢測(cè)囊泡融合情況,。研究人員稱,這種方法可實(shí)時(shí)判定囊泡的形狀,,其清晰度達(dá)納米級(jí),。
哥本哈根大學(xué)副教授迪米特里奧斯·斯塔莫指出,囊泡與膜的聯(lián)系接觸是很多重要生理過(guò)程的基本步驟,。過(guò)去一直缺乏有效方法來(lái)測(cè)量納米級(jí)尺度上囊泡融合的實(shí)時(shí)情況,,現(xiàn)在也僅是有可能獲取這個(gè)進(jìn)程的高清靜止圖片,,或者是解析度很低的實(shí)時(shí)影像。而使用這個(gè)新方法,,研究人員就能以極高的分辨率實(shí)時(shí)觀測(cè)融合過(guò)程中囊泡形態(tài)的變化,,量化囊泡間的接觸區(qū)域,判定囊泡的大小和形狀,。這有助于研究人員了解囊泡融合過(guò)程中的分子特性,為神經(jīng)系統(tǒng)和感染性疾病的研究提供了一個(gè)廣闊的前景,。(生物谷Bioon.com)
生物谷推薦原始出處:
PNAS July 28, 2009 vol. 106 no. 30 12341-12346
Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer
Poul Martin Bendix, Mette S. Pedersen and Dimitrios Stamou,1
Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology and Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
Nanometer-scale intermembrane contact areas (CAs) formed between single small unilamellar lipid vesicles (SUVs) and planar supported lipid bilayers are quantified by measuring fluorescence resonance energy transfer (FRET) between a homogenous layer of donor fluorophores labeling the supported bilayer and acceptor fluorophores labeling the SUVs. The smallest CAs detected in our setup between biotinylated SUVs and dense monolayers of streptavidin were ≈20 nm in radius. Deformation of SUVs is revealed by comparing the quenching of the donors to calculations of FRET between a perfectly spherical shell and a flat surface containing complementary fluorophores. These results confirmed the theoretical prediction that the degree of deformation scales with the SUV diameter. The size of the CA can be controlled experimentally by conjugating polyethylene glycol polymers to the SUV or the surface and thereby modulating the interfacial energy of adhesion. In this manner, we could achieve secure immobilization of SUVs under conditions of minimal deformation. Finally, we demonstrate that kinetic measurements of CA, at constant adhesion, can be used to record in real-time quantitative changes in the bilayer tension of a nano-scale lipid membrane system.