人們普遍認為昆蟲是沒有思維活動的低等動物,。然而,別看昆蟲的大腦小如針尖,,它們的智力卻一點不遜于體形龐大的高等動物,。英國科學家最新研究發(fā)現(xiàn),昆蟲不僅有思維活動,、會數(shù)數(shù),、懂得分門別類,甚至可以識別人臉,。
來自英國瑪麗女王學院,、倫敦大學和劍橋大學的科學家用計算機模擬昆蟲大腦開展實驗。實驗結果顯示,,昆蟲的大腦容量足以使它們擁有思維活動,。實際上,數(shù)百個神經(jīng)細胞就可以支持動物數(shù)數(shù),;數(shù)千個神經(jīng)細胞就可以使動物擁有思維活動,。
蜜蜂的大腦重量約為1毫克,包含近100萬個神經(jīng)細胞,。這些神經(jīng)細胞足可以使蜜蜂擁有思維活動和數(shù)數(shù)能力,。此外,它們可以區(qū)分出各種動物,,判斷圖形是否對稱,。
美國西弗吉尼亞大學神經(jīng)生物學家薩拉·法里斯說,蝗蟲,、螞蟻,、蜜蜂等腦容量較小的昆蟲實際上都比人們想像中聰明得多,能夠根據(jù)外部環(huán)境改變自己的行為習慣,。
眾所周知,,螞蟻、蜜蜂等昆蟲擁有復雜的社會系統(tǒng),;蜜蜂可以通過特殊的舞姿與同伴展開交流,。這些小昆蟲的行為甚至比一些脊椎動物還復雜。
希特卡說:“它們聰明絕頂,?;蛟S,我們只是不敢相信如此微小的大腦竟能完成如此復雜的行為,。它們的大腦雖然小,,但做這些事情已經(jīng)足夠,。”
“問題是,既然這些昆蟲憑借如此微小的大腦就可以做這些事情,,那么對腦容量大的動物而言,,體積大的大腦又有什么用處呢,”希特卡提出并解決了這個問題,,“更大并不意味著更好,。有時候事實與人們想像的恰恰相反。”
他解釋說:“我們知道,,身材決定動物的腦容量,但腦容量并不決定動物可以做出哪些行為,。體積大的大腦并不一定復雜,,可能只是相同神經(jīng)元的無限重復。它能記住更多圖像和聲音,,但并沒有增加功能的復雜性,。在計算機模擬實驗中,體積大的大腦意味著更大的硬盤驅動器,,而不是更好的處理器,。”
鯨魚大腦可重達9千克,包含約2000億個神經(jīng)細胞,;人類大腦重量通常在1.25千克至1.45千克之間,,包含約850億個神經(jīng)細胞;蜜蜂大腦重量約為1毫克,,包含近100萬個神經(jīng)細胞,。
希特卡說,龐大的腦容量可以提高行為的準確性,,使動物擁有更加發(fā)達的感官,,例如視覺和聽覺。此外,,體型大的動物可能只是需要更多腦細胞去支配身體,。(生物谷Bioon.com)
生物谷推薦原始出處:
Current Biology,17 November 2009 doi:10.1016/j.cub.2009.08.023
Are Bigger Brains Better?
Lars Chittka1, and Jeremy Niven2
1 Queen Mary University of London, Research Centre for Psychology, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
2 University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not just the size of brain regions, which underlie these feats. Neural network analyses show that cognitive features found in insects, such as numerosity, attention and categorisation-like processes, may require only very limited neuron numbers. Thus, brain size may have less of a relationship with behavioural repertoire and cognitive capacity than generally assumed, prompting the question of what large brains are for. Larger brains are, at least partly, a consequence of larger neurons that are necessary in large animals due to basic biophysical constraints. They also contain greater replication of neuronal circuits, adding precision to sensory processes, detail to perception, more parallel processing and enlarged storage capacity. Yet, these advantages are unlikely to produce the qualitative shifts in behaviour that are often assumed to accompany increased brain size. Instead, modularity and interconnectivity may be more important.