一項研究顯示,,來自成年小鼠細(xì)胞的經(jīng)過安全性篩選的干細(xì)胞恢復(fù)了脊髓損傷小鼠的運動功能,。
Hideyuki Okano及其同事使用此前開發(fā)的技術(shù)培育出了誘導(dǎo)多能(iPS)干細(xì)胞,它們可以轉(zhuǎn)變成多種類型的細(xì)胞,。此前由同一組科學(xué)家進(jìn)行的研究顯示這些細(xì)胞不那么安全,,或者在移植到小鼠體內(nèi)后更容易形成腫瘤。在這項研究中,,科學(xué)家首先證明了在皮氏培養(yǎng)皿中,他們可以鼓勵這些iPS細(xì)胞分化成各種類型的神經(jīng)細(xì)胞,,包括神經(jīng)元,、星形細(xì)胞和寡突細(xì)胞,形成了一個神經(jīng)球,。當(dāng)這組作者把來自“安全的”iPS細(xì)胞的神經(jīng)球移植到脊髓損傷的小鼠體內(nèi)之后,,這些小鼠恢復(fù)了一些運動功能并且沒有出現(xiàn)腫瘤。當(dāng)這組科學(xué)家移植來自“不安全的”iPS細(xì)胞的神經(jīng)球的時候,,這些小鼠最初表現(xiàn)出了運動功能的改善,,然而,最終出現(xiàn)了腫瘤,,而且運動功能出現(xiàn)了退化,。
這些發(fā)現(xiàn)顯示了在使用iPS細(xì)胞進(jìn)行細(xì)胞治療之前進(jìn)行安全性評估的重要性。他們還提示“安全的”iPS細(xì)胞可能為脊髓損傷的治療帶來希望,。(生物谷Bioon.net)
更多閱讀
全球五大干細(xì)胞治療中心
STEM CELLS:利用人胚胎干細(xì)胞成功治療實驗鼠頸脊髓損傷
Nature Medicine:干細(xì)胞治療神經(jīng)退行性疾病的潛能
干細(xì)胞再生醫(yī)學(xué)—治療心血管疾病的嶄新領(lǐng)域
干細(xì)胞技術(shù)助患者重見光明
生物谷推薦原文出處:
PNAS doi: 10.1073/pnas.0910106107
Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury
Osahiko Tsujia,b,1, Kyoko Miuraa,c,1, Yohei Okadaa,d, Kanehiro Fujiyoshia,b, Masahiko Mukainoa,e, Narihito Nagoshia,b,f, Kazuya Kitamuraa,b, Gentaro Kumagaia,g, Makoto Nishinoa, Shuta Tomisatoa, Hisanobu Higashia, Toshihiro Nagaih, Hiroyuki Katoha,b,f, Kazuhisa Kohdaa, Yumi Matsuzakia, Michisuke Yuzakia, Eiji Ikedai,j, Yoshiaki Toyamab, Masaya Nakamurab,2, Shinya Yamanakac, and Hideyuki Okanoa,2
Various types of induced pluripotent stem (iPS) cells have been established by different methods, and each type exhibits different biological properties. Before iPS cell-based clinical applications can be initiated, detailed evaluations of the cells, including their differentiation potentials and tumorigenic activities in different contexts, should be investigated to establish their safety and effectiveness for cell transplantation therapies. Here we show the directed neural differentiation of murine iPS cells and examine their therapeutic potential in a mouse spinal cord injury (SCI) model. “Safe” iPS-derived neurospheres, which had been pre-evaluated as nontumorigenic by their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse brain, produced electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro. Furthermore, when the safe iPS-derived neurospheres were transplanted into the spinal cord 9 d after contusive injury, they differentiated into all three neural lineages without forming teratomas or other tumors. They also participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery. However, the transplantation of iPS-derived neurospheres pre-evaluated as “unsafe” showed robust teratoma formation and sudden locomotor functional loss after functional recovery in the SCI model. These findings suggest that pre-evaluated safe iPS clone-derived neural stem/progenitor cells may be a promising cell source for transplantation therapy for SCI.