大腦會(huì)過(guò)濾掉不想要的噪音,,就像電視遙控器上的消音按鈕,,讓人們集中于正在聽的聲音。但如果是我們自己說(shuō)話的聲音呢,?據(jù)《每日科學(xué)》網(wǎng)站近日?qǐng)?bào)道,,美國(guó)加利福尼亞大學(xué)伯克利分校的一項(xiàng)新研究顯示,大腦中有一個(gè)音量設(shè)置網(wǎng)絡(luò),,能選擇性把我們自己說(shuō)話的聲音和聽到的聲音調(diào)大調(diào)小,。研究發(fā)表在近期《神經(jīng)科學(xué)雜志》 Journal of Neuroscience 上。
加州大學(xué)伯克利分校(UCSF)神經(jīng)科學(xué)家和約翰·霍普金斯大學(xué)合作,,追蹤研究了一些癲癇病患者大腦活動(dòng),,由于治療需要,病人的腦皮質(zhì)中已經(jīng)植入了電極來(lái)追蹤發(fā)病位點(diǎn),。研究人員檢測(cè)了病人健康大腦組織中的電信號(hào),。
研究人員指導(dǎo)病人復(fù)述聽到的單詞和字母,并記錄下他們的活動(dòng),,對(duì)他們?cè)谡f(shuō)和聽過(guò)程中電信號(hào)的釋放活動(dòng)進(jìn)行了對(duì)比,。結(jié)果發(fā)現(xiàn),病人在說(shuō)話時(shí),,其大腦中聯(lián)系聽力機(jī)制的那部分神經(jīng)元是昏暗的,,而其他神經(jīng)元卻是明亮的,,聽覺(jué)皮質(zhì)區(qū)顯出更少的活動(dòng),而不講話時(shí)則顯出同樣的或更高的活動(dòng)水平,。
以往的研究顯示,,在猴子大腦中有一個(gè)可選擇的聽覺(jué)系統(tǒng),能放大它們自己發(fā)出的各種聲音,,如發(fā)現(xiàn)食物和警告危險(xiǎn),。但尚不清楚人類聽覺(jué)系統(tǒng)是如何連通的。
“我們發(fā)現(xiàn),,每次聽到聲音時(shí),,數(shù)百萬(wàn)的神經(jīng)元每次一起點(diǎn)亮,緊接著數(shù)百萬(wàn)的神經(jīng)元就不再理會(huì)外部聲音,,只有當(dāng)每次你說(shuō)話時(shí)候才又一起點(diǎn)亮,。”論文主要作者、UCSF神經(jīng)科學(xué)系博士生阿迪安·弗林克說(shuō),,“我們所以能區(qū)分自己和他人的講話,,這種馬賽克般的反應(yīng)機(jī)制起著重要作用。”
過(guò)去認(rèn)為,,在講話過(guò)程中,,人類的聽覺(jué)系統(tǒng)大部分是被壓抑的。這次新研究發(fā)現(xiàn)了兩塊緊連在一起的皮層,,位置僅隔幾毫米的腦細(xì)胞亞區(qū),,承擔(dān)不同的音量控制職能,對(duì)自己講話有著截然不同的敏感性,。而這種敏感性有助于區(qū)分自己和他人聲音,,以確保準(zhǔn)確表達(dá)自己的意思。
根據(jù)弗林克的理論,,追蹤自己的講話對(duì)于語(yǔ)言發(fā)展更加重要,,以便監(jiān)控自己所說(shuō)的內(nèi)容,控制環(huán)境噪音的變化,。“無(wú)論是學(xué)習(xí)一種新語(yǔ)言,,還是跟朋友在嘈雜的吧廳交談,我們需要聽到自己在說(shuō)什么,,并根據(jù)需要和外界環(huán)境隨時(shí)做出調(diào)整,。”
弗林克還指出,精神分裂的人不能區(qū)分自己的聲音和他人的聲音,,可能就是因?yàn)樗麄內(nèi)狈@種聽覺(jué)選擇機(jī)制,。這一發(fā)現(xiàn)還有助于更好地理解幻聽現(xiàn)象。(生物谷Bioon.com)
生物谷推薦原文出處:
Journal of Neuroscience DOI: 10.1523/JNEUROSCI.1809-10.2010
Single-Trial Speech Suppression of Auditory Cortex Activity in Humans
Adeen Flinker,1 Edward F. Chang,3 Heidi E. Kirsch,4 Nicholas M. Barbaro,3 Nathan E. Crone,5 and Robert T. Knight1,2,3,4
1Helen Wills Neuroscience Institute and 2Department of Psychology, University of California, Berkeley, California 94720, 3Departments of Neurosurgery and 4Neurology, University of California, San Francisco, California 94143, and 5Department of Neurology, The Johns Hopkins University, Baltimore, Maryland 21205
Correspondence should be addressed to Adeen Flinker, Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720- 3190. Email: [email protected]
The human auditory cortex is engaged in monitoring the speech of interlocutors as well as self-generated speech. During vocalization, auditory cortex activity is reported to be suppressed, an effect often attributed to the influence of an efference copy from motor cortex. Single-unit studies in non-human primates have demonstrated a rich dynamic range of single-trial auditory responses to self-speech consisting of suppressed, nonsuppressed and excited auditory neurons. However, human research using noninvasive methods has only reported suppression of averaged auditory cortex responses to self-generated speech. We addressed this discrepancy by recording electrocorticographic activity from neurosurgical subjects performing auditory repetition tasks. We observed that the degree of suppression varied across different regions of auditory cortex, revealing a variety of suppressed and nonsuppressed responses during vocalization. Importantly, single-trial high-gamma power (High, 70–150 Hz) robustly tracked individual auditory events and exhibited stable responses across trials for suppressed and nonsuppressed regions.